Physics 1B schedule Winter 2009. Instructor: D.N. Basov dbasov@ucsd.edu

| Week | Mon | Wed | Friday |  |
| :--- | :--- | :--- | :--- | :--- |
| 1:Jan 5 | Lecture: Intro, 15.1-15.3 | Lecture: The Coulomb law, | Lecture: the Electric field |  |
| 2: Jan 12 |  <br> Gauss's law |  | Lecture: Gauss <br> law/examples | OH This week only: <br> Fri 4-5 pm, 6-7 pm |
| 3: Jan 19 | University Holiday | Lecture: Potential | Quiz 1: chapter 15 |  |
| 4: Jan 26 | Lecture: capacitance | Lecture: capacitor <br> combinations | Quiz 2: chapter 16 |  |
|  | Lecture: Electric current, <br> Ohm's law | Lecture: Resistivity, Electric <br> power | Lecture: Resistors, series <br> parallel |  |
| 5: Feb 2 | Lecture: Kirchhoff's rules | Lecture: RC circuits | Quiz 3: chapter 17 |  |
| 6: Feb 9 | University Holiday | Lecture: Magnetism | Lecture: torque on current <br> loop, Ampere's law |  |
| 7: Feb 16 | Lecture: current loop, <br> solenoid | Lecture: Induced EMF | Quiz 4: chapter 18-19 |  |
| 8: Feb 23 | Lecture: Faraday's law, <br> Lenz's law | Lecture Inductance, <br> lnductors | Quiz 5: chapter 19-20 |  |
| 9: March 2 | Lecture: Energy of the <br> magnetic field | Lecture: AC circuits | Lecture: discussion of the <br> final exam |  |
| 10: March 9 |  |  |  |  |

HW: Ch15: 1,10,11,13,15,17,20,24,27,28,30,32,36,38,43,46,48
Ch16: 1,3,5,8,12,15,19,22,23,25,29,31,33,35,43,45,47,49,60
Ch17: 1,3,8,9,11,13,16,19,20,23,31,33,39,45,52,60
Ch18: 1,3,5,7,13,17,21,26,31,33,35,
Ch19: 1,3,8,9,11,15,19,22,24,27,29,34,37,38,41,44,47,49,57,61
Ch20: 1,5,8,11,13,16,18,23,25,27,29,31,34,37,39,
Quizzes:

HW problems, problems in class, more...
4 best out of 5
No make-up quizzes for anv reason
T.A.:A: Zhoushen Huang zhohuang@physics.ucsd.edu
B: Andreas Stergiou, stergiou@physics.ucsd.edu

Final exam: all material in ch 15-21 no make up final for any reason

Last update: Jan 15, 2009

## Potential difference and electric potential [16.1]

Recall physics 1A:

$$
\begin{aligned}
& \Delta P E_{A B}=-W_{A B}=-F \Delta x \\
& \text { ergy } \quad \text { Work done by } \quad \text { A path } \\
& \text { a conservative force } \quad \text { from } A \text { to } B
\end{aligned}
$$

Potential energy difference


## Potential difference and electric potential [16.1]



## Potential difference and electric potential [16.1]

| Recall physics 1A: $\quad \triangle P E_{A B}=-W_{A B}=-F \Delta x$ |  |  |
| :---: | :---: | :---: |
| Potential energy | Work done by | A A path |
| difference | a conservative force | from A to B |

Physics 1B: $\triangle P E_{A B}$ due to moving charged objects in an electric field

$\Delta P E_{A B}=-W_{A B}=-F d=-(-q E d)=q E d$
Because force is opposite to the direction of charge motion
sign of charge q is important!

$$
\Delta V \equiv V_{B}-V_{A}=\frac{\Delta P E}{q}
$$

The potential difference $\Delta \mathrm{V}$ between final point $B$ and initial point $A$ : $V_{B}-V_{A}$ is defined in terms of change of PE divided by the magnitude of the charge.
Scalar quantity. Units $1 \mathrm{~V}=1 \mathrm{~J} / 1 \mathrm{C}$

$$
\frac{\Delta P E}{q}=V_{B}-V_{A}=-E d
$$

## Potential difference and electric potential [16.1]

 Potential: a property of the space due to charges

The potential energy is due to the charge interacting with the field.


$$
\Delta V \equiv V_{B}-V_{A}=\frac{\Delta P E}{q}
$$

$$
\frac{\Delta P E}{q}=V_{B}-V_{A}=-E d
$$

Potential-Depends only position in the field! Units (V)

Potential Energy- Depends on the interaction of the field with a charge. Units (J)
Related by: $\Delta \mathrm{PE}=\mathrm{q} \Delta \mathrm{V}$
Both PE and V are relative. Only $(\triangle \mathrm{PE}$ and $\Delta \mathrm{V}$ ) are important!

## Example

An electron in the picture tube of an older TV set is accelerated from rest through a potential difference $\Delta V=5000 \mathrm{~V}$ by a uniform electric field. What is the change in potential energy of the electron? What is the speed of the electron as a result of this acceleration (assume it started from rest)?

$$
\begin{aligned}
& \text { definition of electric potential } \\
& \Delta P E=q_{o}(\Delta V) \\
& \Delta P E=-1.602 \times 10^{-19} \mathrm{C}(+5000 \mathrm{~V})=-8.0 \times 10^{-16} \mathrm{~J} \\
& \frac{1}{2} m v^{2}=-\Delta P E \\
& v=\sqrt{\frac{-2(\Delta P E)}{m}}=\sqrt{\frac{-2\left(-8.0 \times 10^{-16} \mathrm{~J}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}}=4.2 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

## Potential due to a point charge [16.2]



$$
\frac{\Delta P E}{q}=V_{B}-V_{A}=-E d
$$

$$
E=\frac{k_{e} q}{r^{2}}
$$

$V=\frac{k_{e} q}{r}$ [Eq. 16.4]
$r$
$\mathrm{V}=0$ at $\quad r=\infty$
$\rightarrow$ The electric potential or work per unit charge required to move a test charge from infinity to distance $r$ from the positive point charge as the positive charge moves close to $q$.
Potential is a scalar

## Potential due to a point charae [16.21

In a crystal of $\mathrm{Na}^{+} \mathrm{Cl}^{-}$the distance between the ions is 0.24 nm . Find the potential due to $\mathrm{Cl}^{-}$at the position of the $\mathrm{Na}^{+}$. Find the electrostatic energy of the $\mathrm{Na}^{+}$due to the interaction with Cl .

$$
\mathrm{r}=0.24 \mathrm{~nm}
$$


$V=\frac{k_{e} q}{r}$
Superposition brinciple:
the total electric potential at $P$ due to multiple point charges is the algebraic sum
$P E=q V=1.6 \times 10^{-19} x-6.0=-9.6 \times 10^{-19} \mathrm{~J}$ of the electric potentials due to the individual charges ELECTRON VOLT (convenient unit for atomic physics)
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$P E=-6.0 \mathrm{eV}$

## Potential due to a point charge [16.2]



$$
E=\frac{k_{e} q}{r^{2}}
$$

$V=\frac{k_{e} q}{r}$ [Eq. 16.4]
$r$

$$
\mathrm{V}=0 \text { at } \quad r=\infty
$$

Superposition principle:
the total electric potential at $P$ due to multiple point charges is the algebraic sum of the electric potentials due to the individual charges

Potential is a scalar

## Electric potential: superposition [16.2]

Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . If the Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at the A find the potential at A.


ENERGY of a CHARGE DISTRIBUTION [16.2]


How much energy is stored in this square charge distribution?

$$
\begin{gathered}
W_{1}=? \quad W_{2}=k \frac{q^{2}}{a} \\
W_{3}=k\left(\frac{q^{2}}{a}+\frac{q^{2}}{a \sqrt{2}}\right) \\
W_{4}=k\left(-\frac{q^{2}}{2 a}-\frac{q^{2}}{2 a}-\frac{q^{2}}{2 a \sqrt{2}}\right) \\
W=W_{2}+W_{3}+W_{4}=\frac{k q^{2}(2 \sqrt{2}+1)}{2 a \sqrt{2}}
\end{gathered}
$$

## ENERGY of a CHARGE DISTRIBUTION [16.2]

Which of the charge distributions is the most stable? (has the lowest PE)

$P E=0+k \frac{q^{2}}{a}-k \frac{q^{2}}{a}-k \frac{q^{2}}{a \sqrt{2}}-k \frac{q^{2}}{a}+k \frac{q^{2}}{a}-k \frac{q^{2}}{a \sqrt{2}}$
STABLE

$$
P E=-k \frac{2 q^{2}}{a \sqrt{2}} \quad P E=0-k \frac{q^{2}}{a}-k \frac{q^{2}}{a}+k \frac{q^{2}}{a \sqrt{2}}-k \frac{q^{2}}{a}-k \frac{q^{2}}{a}+k \frac{q^{2}}{a \sqrt{2}}
$$

$$
P E=-k \frac{4 q^{2}}{a}+k \frac{2 q^{2}}{a \sqrt{2}}
$$

## Potentials and charge conductors [16.3]



Fig. 16-9

Work on a charge done by electric force: $W=-\triangle P E$
Points A and B :

$$
\Delta P E=q\left(V_{B}-V_{A}\right)
$$

$$
W=-q\left(V_{B}-V_{A}\right)
$$

No net work is required to move charges between two points at the same V!

Charged conductor: all points on the surface have the same V . Why?
At equilibrium:
$E$ is perpendicular to a path between $A \& B \rightarrow W=0$

$$
V_{A}=V_{B}
$$

The electric potential is constant everywhere on the surface of a charge conductor in equilibrium.

The electric potential is constant everywhere inside a conductor and is equal to the value at the surface.

## Equipotential surfaces [16.4]

An equipotential surface is a surface on which all points are the same potential.

It takes no work to move a particle along an equipotential surface or line (assume speed is constant).

The electric field at every point on an equipotential surface is perpendicular to the surface.

Equipotential surfaces are normally thought of as being imaginary; but they may correspond to real surfaces (like the surface of a conductor).

## Equipotential surfaces: point charge [16.4]




Point charge: equipotential surfaces are all spheres centered on the charge.

We represent these spheres with equipotential lines.

Note that the field lines are perpendicular to the equipotential lines at every crossing.

## Equipotential surfaces: point charge [16.4]




Point charge: equipotential surfaces are all spheres centered on the charge.

We represent these spheres with equipotential lines.

Note that the field lines are perpendicular to the equipotential lines at every crossing.

## Equipotential surfaces: point charge [16.4]




Point charge: equipotential surfaces are all spheres centered on the charge.

We represent these spheres with equipotential lines.

Note that the field lines are perpendicular to the equipotential lines at every crossing.

## Equipotential surfaces: dipole [16.4]



## Capacitance [16.6]

Capacitor
a device for storing charge and energy, can be discharged rapidly to release energy.

Applications
-Camera flash

-Defibrillators

- Electronic devices
-Computer memories (store information)
-Many more!


## Parallel plate capacitor

two "infinite" planes of charge area A separated by distance $d$ where $d \ll A$, carry charge $+q,-q$


The charges are at the inner surface of the capacitor

## Field inside the capacitor plates

By superposition of fields due to sheet of charge

$$
\mathrm{E}_{\text {in }}=\frac{\sigma}{\varepsilon_{0}}
$$

## E field outside the capacitor using Gauss's

 Lawuse a cylinder as the Gaussian surface, ends of the cylinder parallel to $A$, sides perpendicular to $A$


$$
\begin{aligned}
& \Phi_{E}=\frac{q-q}{\varepsilon_{0}}=0=2 E_{\text {out }} A \\
& E_{\text {out }}=0
\end{aligned}
$$

The charge in the Gaussian surface is zero.

The E field outside the capacitor is zero

## E field inside the capacitor using Gauss's Law



$$
\begin{aligned}
& \Phi_{E}=E_{i n} A=\frac{q}{\varepsilon_{0}} \\
& E_{i n}=\frac{q}{A \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}
\end{aligned}
$$

## Capacitance [16.6]

Parallel plate capacitor


## Capacitance [16.6]

Circuit Diagram:


## Parallel plate capacitor [16.7]

Circuit Diagram:


Gauss' law: $E=\frac{\sigma}{\varepsilon_{0}}=\frac{q}{A \varepsilon_{0}}=\frac{\Delta V}{d}$
E field increases with charge density
rearrange $\frac{q}{\Delta V}=\frac{A \varepsilon_{0}}{d} \quad C=\frac{A \varepsilon_{0}}{d}$
to increase C:
Increase A
Decrease d

## Parallel plate capacitor [16.7]

Example: A parallel plate capacitor with 2 plates each with area $1.0 \mathrm{~m}^{2}$ separated by a distance of 1.0 mm holds $+\mathrm{q},-\mathrm{q}, \mathrm{q}=10^{-6} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{q} \quad \begin{array}{l}
\text { a) Find the capacitance. } \\
\text { b) Find the } \mathrm{E} \text { field }
\end{array} \\
& \mathrm{C}=\frac{A \varepsilon_{0}}{d} \quad=\frac{1\left(8.9 \times 10^{-12}\right)}{0.001}=8.9 \times 10^{-9} \mathrm{~F}=8.9 \mathrm{nF} \\
& \mathrm{E}=\frac{\mathrm{q}}{A \varepsilon_{0}} \quad=\frac{1 \times 10^{-6}}{(1)\left(8.9 \times 10^{-12}\right)}=1.1 \times 10^{5} \mathrm{~V} / \mathrm{m} \\
& \Delta \mathrm{~V}=\mathrm{Ed} \\
& \text { C) Find } \Delta \mathrm{V} \text { across the plates } \\
& \mathrm{C}=1.1 \times 10^{5}\left(1 \times 10^{-3}\right)=1.1 \times 10^{2} \mathrm{~V}
\end{aligned}
$$

## Thin film capacitors

Metal film separated by thin insulators $\quad C=\frac{A \varepsilon_{0}}{d}$


Making the area large and the insulating gap small increases C

## Energy stored in a charged capacitor [16.9]



## Understanding capacitors

Suppose the capacitor shown here is charged to $Q$ and then the battery is disconnected. Now suppose I pull the plates further apart so that the final separation is $d 1$.


- How do the quantities $Q, U, C, V, E$ change?

$$
U=\frac{1}{2} Q \Delta V
$$

- $Q$ : = const: no way for charge to leave.
- $U$ : increases.. add energy to system by separating
- C: decreases.. since energy $\uparrow$, but $Q$ remains same

$$
U=\frac{Q^{2}}{2 C}
$$

- $V$ : increases.. since $C \downarrow$, but $Q$ remains same
- $E$ : remains the same... depends only on charge density $\Delta V=\frac{Q}{C}$

$$
C_{1}=\frac{d}{d_{1}} C \quad V_{1}=\frac{d_{1}}{d} V \quad U_{1}=\frac{d_{1}}{d} U
$$

## Understanding capacitors

Suppose the battery $(V)$ is kept attached to the capacitor. Again pull the plates apart from $d$ to $d 1$.

- How do the quantities $Q, U, C, V, E$ change?

- C: decreases (capacitance depends only on geometry)
- $V$ : must stay the same - the battery forces it to be $V$
- Q: must decrease, $Q=C V$ charge flows off the plate
- $E$ : must decrease $\left(E=\frac{V}{D}, E=\frac{\sigma}{E_{0}}\right.$ )
- $\boldsymbol{U}$ : must decrease $\left(U=\frac{1}{2} C V^{2}\right)$

$$
C=\frac{Q}{V}=\frac{\varepsilon_{0} A}{d}
$$

$$
C_{1}=\frac{d}{d_{1}} C
$$

$$
E_{1}=\frac{d}{d_{1}} E
$$

$$
U_{1}=\frac{d}{d_{1}} U
$$

## Combinations of capacitors [16.8]

Capacitors connected in series and parallel


Voltage source resistor capacitor


Circuit diagram


## $c_{1}$ Parallel capacitors [16.8]



$$
C_{\mathrm{eq}}=C_{1}+C_{2}
$$



Both capacitors are at same potential: $\Delta V=\Delta V_{1}=\Delta V_{2}$
Total charge: $q=q_{1}+q_{2}=C_{1} \Delta V+C_{2} \Delta V$

Fig. 16-17

$$
C_{e q}=\frac{q}{\Delta V}=\frac{C_{1} \Delta V+C_{2} \Delta V}{\Delta V}
$$

$$
C_{e q}=C_{1}+C_{2}
$$

## Parallel capacitors [16.8]

For N capacitors in parallel:

$$
C_{e q}=C_{1}+C_{2}+\ldots \ldots . C_{N}
$$



$$
C_{\mathrm{eq}}=C_{1}+C_{2}
$$



$$
\text { Both capacitors are at same potential: } \Delta V=\Delta V_{1}=\Delta V_{2}
$$

$$
\text { Total charge: } q=q_{1}+q_{2}=C_{1} \Delta V+C_{2} \Delta V
$$

$$
C_{e q}=\frac{q}{\Delta V}=\frac{C_{1} \Delta V+C_{2} \Delta V}{\Delta V}
$$

$$
C_{e q}=C_{1}+C_{2}
$$

## Capacitors in series [16.8]



## Combinations of capacitors [16.8]

- What is the equivalent capacitance, $C_{\text {eq }}$, of the combination shown?


$$
\frac{1}{C_{1}}=\frac{1}{C}+\frac{1}{C} \Rightarrow C_{1}=\frac{C}{2} \Rightarrow C_{e q}=C+\frac{C}{2}=\frac{3}{2} C
$$

## 34. Find the equivalent capacitance.



Figure P16.34

$$
\frac{1}{C_{\text {series }}}=\frac{1}{24}+\frac{1}{8}=\frac{4}{24}=\frac{1}{6}
$$

$C_{\text {eq }}=4.00+2.00+6.00=12.00 \mu \mathrm{~F}$

## 34. Find the charge on each capacitor.



$$
\begin{aligned}
& \text { FIGURE P16.34 } \\
& q=C \Delta V \\
& q_{1}=C_{1} \Delta V=4 \times 10^{-6}(36)=1.44 \times 10^{-4} \mathrm{C} \\
& \mathrm{q}_{2}=\mathrm{C}_{2} \Delta \mathrm{~V}=2 \times 10^{-6}(36)=0.72 \times 10^{-4} \mathrm{C} \\
& \mathrm{q}_{3}=\mathrm{q}_{4}=\mathrm{C}_{\text {series }} \Delta \mathrm{V}=6 \times 10^{-6}(36)=2.16 \times 10^{-4} \mathrm{C}
\end{aligned}
$$

## Combinations of capacitors [16.8]

- What is the relationship between $V_{0}$ and $V$ in the systems shown below?

- The electric field in the conductor $=0$.
- The electric field everywhere else is: $E=Q /\left(A \varepsilon_{0}\right)$
- To find the potential difference, integrate the electric field:

$$
\begin{aligned}
V_{0}=E d \quad V & =E \frac{d}{4}+0+E \frac{d}{4} \\
V & =\frac{1}{2} E d
\end{aligned}
$$

## Combinations of capacitors [16.8]

Problem 16-42. Find the equivalent capacitance between a and b.


## Combinations of capacitors [16.8]

Two identical capacitors. charge one capacitor at 10 V , disconnect, connect the charged capacitor to the uncharged capacitor. What is the voltage drop across the each capacitor?

One way to do this problem:
q is constant but divided between the two capacitors

the charge on each capacitor is reduced by 2 fold thus the voltage across each capacitor is reduced by 2 fold

$$
\Delta V=\frac{\Delta V_{o}}{2}
$$

## Combinations of capacitors [16.8]

Two identical capacitors. charge one capacitor at 10 V , disconnect, connect the charged capacitor to the uncharged capacitor. What is the voltage drop across the each capacitor?

Another way to do this problem
q is constant but is placed on an equivalent capacitor


The voltage is reduced by 2 fold $\quad \Delta V=\frac{q}{C_{e q}}=\frac{q}{2 C}=\frac{\Delta V_{o}}{2}$

## Capacitors with dielectrics [16.8]

$$
C=600 \mu F
$$



Dielectric material - insulators such as paper, glass plastic, ceramic.
"Dielectric Strength" - is the electric field at which conduction occurs through the material


## Capacitors with dielectrics [16.8]



Fig.16-23

$$
\Delta V=\frac{\Delta V_{o}}{\kappa}
$$

Potential due to charge $q$ decreases


$$
\mathrm{E}_{\text {effective }}=\mathrm{E}-\mathrm{E}_{\text {polarization }}=\frac{\sigma}{k \varepsilon_{0}}
$$

$\kappa=$ dielectric constant (dimensionless)

## Capacitors with dielectrics [16.8]

Originally
$+q$


Add dielectric

Capacitance increases

## Capacitors with dielectrics [16.8]

Originally
$+q$

Co

Add dielectric


Electric field decreases (when not connected to a battery)

## Capacitors with dielectrics [16.8]

## Originally

$$
+q
$$

$$
\mathrm{C}_{0}
$$

Add dielectric


Permittivity is increased (Compared to vacuum)

## Capacitors with dielectrics [16.8]

Example: A parallel plate capacitor consists of metal sheets ( $\mathrm{A}=1.0 \mathrm{~m}^{2}$ ) separated by a Teflon sheet ( $\mathrm{K}=2.1$ ) with a thickness of 0.005 mm . (a) find the capacitance. (b) Find the maximum voltage. The maximum electric field across Teflon is $60 \times 10^{6}$ $\mathrm{V} / \mathrm{m}$. - this is its dielectric strength.
(a)

$C=\frac{\kappa \varepsilon_{0} A}{d}=\frac{2.1\left(8.8 \times 10^{-12}\right)(1.0)}{0.005 \times 10^{-3}}$
$C=3.7 \times 10^{-6} \mathrm{~F}$
(b) $\Delta V_{\max }=E_{d s} d=60 \times 10^{6}\left(0.005 \times 10^{-3}\right)=300 \mathrm{~V}$

## Capacitors with dielectrics summary [16.8]



