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26 Observations of Black holes: powerpoint slide presentation

27 Entropy and Black Holes

It turns out that because black holes have a temperature, they also have an entropy. In fact the entropy
of the black hole is enormous even though a black hole is described by only three numbers and therefore
seems to be a very simple state! Remember entropy is a measure of the disorder in a system; it is equal
to k times the log of the number of quantum states of the system.

A clue to this is the Hawking area theorem: the area of the horizon of a black hole cannot decrease.
That is

dA/dt ≥ 0.

It turns out this is the same statement as the third law of thermodynamics, that the entropy in an isolated
system cannot decrease. We won’t prove this, but can get a flavor of it by fooling around with equations
we already know.

Consider the area of a black hole horizon A = 4πr2

S
= 16πG2M2/c4, where I put the c’s back in.

Taking the derivative of the above equation we get

dA =
32πMG2

c4
dM,

or

dM =
c4dA

32πG2M
.

The total energy of the black hole is E = Mc2, so dE = c2dM , and the Hawking temperature of the
black hole is T = hc3/(8πkGM), so we can write

dE =

(

hc3

8πkGM

) (

kc3dA

4hG

)

,

or

dE = Td

(

kAc3

4hG

)

.

This all follows simply from the Hawking temperature formula, but Hawking and Bekenstein noticed that
this equation is the same as a famous equation from thermodynamics.

dE = TdS,
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where S is the thermodynamic entropy of the system. Thus they identified the entropy of the black hole
as

S =
A

4

(

kc3

hG

)

.

Thus in this identification the entropy is proportional to the surface area of the black hole. What is
totally cool about this identification, is the Hawking area theorem that says the area of a black hole can
never decrease becomes the third law of thermodynamics which says that the entropy of a system
can never decrease. This thermodynamic identification also implies that black holes should radiate as
blackbodies, which they do. In fact, the surface area of a black hole does decrease as it radiates, but then
one needs to take into account the entropy of the radiation. Overall the entropy of the entire system,
black hole plus Hawking radiation does not decrease. The thermodynamics works out great. It is a
beautiful connection that Hawking and Bekenstein and others made, and fits together perfectly.

String theorists recently had one of their few successes, when they managed to calculate the entropy
of a black hole using string theory and got the Hawking/Bekenstein answer. It was a post-diction not a
prediction, but it gave great encouragement to the string theory community and lead to several new and
deep understandings of the relation between black holes and thermodynamics, including information loss
in black holes.

The string theorists were able to count the quantum states of a black hole by finding a dual system,
that is, a set of equations that described a black hole but using a specific quantum field theory rather than
general relativity. The black hole was dual to a gas of hot gluon-like particles, in which the quantum states
could be counted. It came out to be just the Hawking/Bekenstein answer. The spectrum of radiation
coming from the gas of hot gluons could also be counted using the QFT and it was Hawking answer. One
should note that this calculation was not for a normal spherical black hole, but for a certainly limiting
case of a very particular model that does not exist in the real world, that is a maximally charged black
hole with 4 supersymmetries), but still this was a great success for string theory and helps greatly in our
understanding of what black holes really are.

Finally, there are interesting new developments that are very related to these issues. They go by the
name “holographic” principle in string theory. The basic puzzle is why the entropy of a black hole is
proportional to its surface area. Normally we think of entropy as an extensive quantity; if you double
the volume of a box of gas, you double the entropy of that system. Here however, the entropy does not
go as the volume. This is weird since you really think that the number of quantum states that a system
has should depend upon its volume size, not the area of the bounding surface. The holographic idea is to
generalize this principle to all systems: the number of degrees of freedom of any system should be limited
by a bounding surface area, and scale as surface area, not volume. For a black hole it might make some
kind of sense, since we saw everything kind of gets hung up at the horizon and never makes it in (as
observed from far away). But why would this be true in general? There are several deep string theory
reasons for these speculations and they are the topics of current research.

2


