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24 Can anything escape a black hole? Hawking radiation

In 1974 Stephen Hawking startled the Physics community by proving that black holes are not black;
they radiate and lose mass. We have always heard and seen proofs that nothing can get out of a black
hole, but here was a proof that radiation must escape! This was not any mistake in previous work –
General Relativity is a classical theory, and Hawking used quantum mechanics in his proof. Hawking was
considered to be a very smart guy before this result, but this result is what made him famous.

We have considered photons classically following geodesics, but in quantum mechanics the uncertainty
principle means that rays cannot be localized to arbitrary precesion. Near the horizon of a black hole
this changes their behavior.

To do the Hawking calculation properly one needs to use Quantum Field Theory (QFT), the rela-
tivistically correct version of quantum mechanics, and this theory is beyond the scope of this course. So
we will just describe things heuristically to give you a conceptual idea of what is going on here.

The uncertainty principle has several forms, one of which is

∆E∆t ≥ h̄,

where ∆E is the uncertainty in a particle’s energy in a quantum state for a measurment lasting a time ∆t.
Thus on a very short time scale one can’t know precisely the energy of any quantum state. This principle
is preserved in Quantum Field Theory, and it means that the vacuum is filled with energy fluctuations that
violate energy conservation. As long as the violation lasts for a time less than ∆t = h̄/∆E, everything
is OK. Short times implies small distances since particles travel at speeds less than c, so on small scales
energy does not have to be conserved. Only over larger times and larger distances is energy conservation
valid. This is how particles tunnel under barriers that seem to not allow particles through. Thus in QFT
we visualize the vacuum, that is empty space, as being a boiling caldron of particles and anti-particles
being continually created and destroyed. These particles are living on borrowed energy and so have to
disappear again in time to satisfy the uncertainty relation, unless they can get enough energy somehow
to “go on mass shell” and survive. One can actually use this idea to calculate the probability of creating
particles in particle accelerators. The particles in the accelerator transfer their energy to the virtual

particles living on borrowed energy and allow them to become real.
Now consider such fluctuations near the horizon of a black hole. Suppose two photons are spon-

taneously created, one with energy E and the other with energy −E. The particle with −E cannot
propagate freely through space and would normally have to pay back its borrowed energy in a short time
∆t = h̄/E. However the particle can gain energy by falling into the black hole. If the negative energy
particle falls in, then that negative energy will be forced down to the singularity and be added to the
black hole. Then the positive energy photon can escape to infinity. Recall that inside the black hole
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forward in time means decreasing r, and that the energies of particles can be either negative or positive
depending on whether t is going forward or backward. Over long times the energy has to be conserved,
so if −E goes down the hole, +E has to escape to infinity. Another way to say this is that the virtual
particle can gain enough energy to live by falling into the hole. If it was originally a negative energy
photon, then the hole mass will decrease and the excess energy radiated away.

I realize this is not a very satisfactory explanation. It is not easy to explain without QFT, and even
then it is tricky, but careful consideration by many physicists have convinced most everyone that this
effect in fact happens. However, it has not been observed experimentally, as we shall see. Also, since all
types of particles are created by quantum fluctuations near the horizon, a black hole must emit all types
of particles: photons, electrons, quarks, etc.

Their are other ways to get at Hawking radiation that are more general. I like a method that considers
what space time looks like in a permanently accelerating frame (like the shell frame we discussed earlier,
which is the frame of us sitting still on Earth.) If one uses Rindler coordinates one can show that someone
moving with a constant acceleration through empty space, actually sees a thermal bath of particles and
also an event horizon. This is called the Unruh effect and the radiation is called Unruh radiation. One
can calculate the temperature that is seen using this method, say in the shell frame just above the horizon
of a black hole and get Hawking’s answer.

In any case, Hawking showed that the radiation coming out of a black hole is a nearly perfect black-
body, characterized by the Hawking Temperature

T =
h̄c3

8πkGM
= 10−7

(

M⊙

M

)

K,

where k is Boltzmann’s constant and the temperature is given in degrees Kelvin. Recall that the typical
energy of a photon radiated from a blackbody is given by

E = kT =
h̄c3

8πGM
.

Also the total energy coming off of a spherical object (like a star or black hole) is proportional to its
surface area A and the temperature to the fourth power,

L = σAT 4,

where A = 4πR2, and the Stefan-Boltzmann constant is σ = 5.67 × 10−8 W m−2 K−4.
We can use these formulas to find out the temperature of a black hole, and also how much energy is

coming off it. But first we note above that the temperature of the smallest black hole expected to exist
in nature, (3M⊙) is a few times 10−7 K. This is a very low temperature!

Of course the Hawking radiation causes the black hole to decrease in mass. One can ask how long will
it take to reduce the mass of the black hole to zero, that is to completely evaporate a black hole? Well,
currently with a cosmic microwave background radiation filling the Universe with a 2.7K radiation field,
black holes are not losing any mass, but are gaining! So black holes would never evaporate in the current
environment. However, the Universe is cooling down and eventually may get to below 10−7 K, and then
black holes could start losing mass. Also if there were black holes with masses less than about the Moon’s
mass, then their Hawking temperature would be greater than 2.7K and they would be evaporating (as
long as other stuff wasn’t falling it).
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Now the area of a black hole is A = 4πr2
S = 16πG2M2, and the energy lost through Hawking radiation

is equal to the change in the black hole mass:

dM

dt
= −Lhawking = −σAT 4 = −σ16πG2M2T 4 = −16πσG2(10−7M⊙K)4M−2.

We integrate this from the hole’s current mass to zero mass over the black hole’s lifetime Tlife,

∫ Tlife

0

dt = −

∫ 0

M

M2dM

B
,

where B = 16πσG2(10−7M⊙K)4. Thus we find

Tlife =
M3

3B
≈ 1010years

(

M

1012kg

)3

≈ 1066years

(

M

M⊙

)3

.

Since the Universe is only 1.37× 1010 years old we see that for normal black holes, their lifetimes are
way longer than the age of the Universe. These holes are going to be around for a very long time.

But since the temperature goes inversely with the mass, lighter holes evaporate faster and also have
less mass to evaporate. Thus their lifetimes are much shorter. We can ask how light would a black hole
have to be in order to just be evaporating today?

I give you this question as a homework problem! It is a value quite a bit smaller than black holes
expected to form from normal stellar processes. I think the answer comes out to be around the mass
of a mountain. While no known stellar processes could form such small black holes, Stephen Hawking
proposed that the Big Bang itself could create a large number of these primordial black holes. These
then could be floating around in space. Could you detect them? The Schwarzschild radius of the Earth
is only 0.88 centimeter and these would be much smaller. Their gravity would be much less than a planet
or moon or even an asteroid. So could you see it? Well, look again at the temperature formula. What
happens as M → 0? The temperature of the black hole increases; in fact it increases without limit! If
you plug in a guess at the mass of such a primordial black hole into the Hawking Temperature formula
you find that they are radiating at a temperature of billions of degrees K! Thus the shine very bright!
However, they are small and can’t be seen very far away until the very end when they explode in a burst
of very high energy gamma rays.

We can be more precise. Consider the last second of the primordial black hole’s life. Plugging τ = 1
second into the lifetime formula you get a mass of about 106 kg which (using E = Mc2) is about 1023

Joules. Thus the power output during the last second is about 1023 Joules/sec which can be compared
to the solar luminosity of 4 × 1026 J/s. Thus this is a few thousand times dimmer than the Sun, about
the energy of a very small star. This could be seen if it was fairly near. The energy spectrum would not
be that of a star but would be peaked in the gamma rays. Thus the signature of these small primoridal
black holes is an intense burst of gamma rays that last a very short time. When gamma ray bursts
were discovered people considered this as a possible source, but the energy spectrum was wrong. For
evaporating black holes we expect the energy of the emitted radiation to become more energic near the
end since the temperature continually rises. The non-detection of these bursts mean that primordial
black holes that have lifetimes equal to the age of the Universe can’t exist. However, primordial black
holes that are more massive and therefore live longer are still a possibility and could even be the dark
matter. Most people don’t think about these however, because to date, no one has thought of a good
way to create the right number of these primordial black holes in the early Universe just after the Big
Bang.
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Note the final fate of an evaporating black hole is still not really known. All of Hawking’s calculations
break down when the quantum mechanical wavelength of the particles near the size of the black hole
horizon λ ∼ rS . As the black holes evaporate and get smaller we have to eventually reach this limit.
At that point we would need a real theory of quantum gravity, which does not yet exist. String theory
is a candidate, but so far they can’t calculate anything using string theory. We can estimate when the
breakdown occurs using the above condition

λ ∼ rS .

Using
E = hν = hc/λ = Mc2,

we find

λ =
h

Mc
,

and the above condition becomes
h

Mc
=

GM

c2
,

or M2 = hc/G, or

Mplanck =
√

hc/G ≈ 2 × 10−5gm,

where we introduced the standard name of this mass: the Planck mass. At this mass, and at the scales
corresponding to this mass, we expect quantum effects to become so important that standard General
Relativity breaks down. This is the scale string theory and any theory of quantum gravity works at.
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