
Physics 161: Black Holes: Lecture 11: 29 Jan 2010

Professor: Kim Griest

11 Shooting light rays into black holes, Inside a black hole, and

Effective potentials

Let’s calculate radial motion into black holes another way, a way that is often very useful, because it
bypasses the geodesic equations. Let’s calculate how long it takes to shoot a ray of light into black hole.

For light we know the invarient interval ds2 = 0, that is the metric distance, aka proper time, is 0. So
for light itself how long does it take to get into a black hole? It takes the same time it take light to go
anywhere, zero! From light’s point of view no time ever passes since dτ = 0 always. OK, that means we
set the metric equal to zero for light. This is the very useful trick. Considering radial infall, we can also
set dφ = dθ = 0, and get

dt =
dr

(1 − rS/r)
.

Integrating both sides from t = 0 at r = r0 to t = t at r = r, we find

t = r0 − r + rS ln

(

r0 − rS

r − rS

)

.

From our previous work we expect the time for light go from r = 30 km to r = rS to be less than a
millisecond. But plugging into the above equation we get a factor ln((30−8.85)/(8.85−8.85)) → ln(∞) →
∞. There is a logarithmic divergence and again we see we never get into the black hole!

Of course, from the point of view of the light ray, or the falling guy, they get in and are crushed within
a millisecond. It is just that time viewed from far away runs differently at the horizon of a black hole.
The problem is with the use of this far away time. Also, while it is true that everything that ever falls
into a black hole seems to “hang up” at the horizon, it is not that case that someone looking closely at
a black hole sees all that junk. Remember the light coming to you from the falling objects redshifts to
infinity and therefore those objects become invisible very quickly.

As an interesting aside consider what would happen if you tried to lower yourself slowly into a black
hole on a very strong rope. I’m not going to do the calculation but the effective acceleration of gravity
you would feel would increase without limit. The effective g, which is GM/r2 = 9.8 m/s2 here on Earth
becomes

g = (GM/r2)(1 − rS/r)−1/2.

Thus the force becomes infinitely strong at r = rS , the rope will break and you will fall to your death.
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11.1 Inside the Black Hole

The Schwarzchild metric is the solution to Einstein’s GR equations in the vacuum around a spherically
symmetric object. Thus we expect these to work even if the object is smaller than rS . What happens at
and inside r = rS = 2GM/c2? The metric is bad at r = rS , but actually it is OK inside.

ds2 = −

(

1 −
2GM

rc2

)

dt2 +

(

1 −
2GM

rc2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2,

First consider lightcones, the causally connected past and future. How did we find these in Special
Relativity? Considering just one space and one time dimension: ds2 = −dt2 + dx2 = 0, for light. This
defines the null geodesics. Solving we find dt = ±dr, or dt/dr = ±1, which implies the lightcones are lines
of 450 in a spacetime diagram. Remember also that above the 450 lines is the timelike ds2 < 0 future,
while outside the lines is the ds2 > 0 spacelike elsewhere. In Special Relativity all lightcones have these
450 lines.

How about in General Relativity. Again we set ds2 = 0 to find the null geodesics, giving −dt2(1 −

rS/r) + dr2/(1 − rS/r) = 0, or
dt

dr
= ±

1

1 − rS

r

.

Thus the lightcones are not 450 lines. As r → ∞, rS/r → 0, so dt/dr → ±1, and the lightcones are at
450, but closer to the spherical mass the angles are smaller, dt/dr > ±1. Thus the lightcones squeeze-up.
Thus the path of light as it travels towards a spherical mass in a spacetime diagram is not on a 450 line,
but on a curved line that gets more steep as it approaches the Schwarzschild radius.

Fig: Path of light as it approaches a black hole

We can calculate the angle of the lightcone at any value of r very simply. Just use

dt

dr
= tan θ.

Thus at 30 km from a 3M⊙ mass hole the angle of the lightcone is dt/dr = 1/(1 − 8.85/30) = 1.42, or
θ = 550. This angle goes to 900 at r = rS . So we see that right at r = rS , dt/dr → ∞, and no progress
in r is possible! Not even light can make it into the black when far-away time is used as the coordinate.
How does this jive with the fact that we calculated things can fall into black holes in just milliseconds?
The point is that t is time measured by someone far away, not the traveler.

Now look what happens to the metric when r < rS . Notice that since rs/r > 1, the terms (1 − rS/r)
become less than zero.

ds2 = −dt2(1 − rS/r) + dr2/(1 − rS/r) + r2dθ2 + r2 sin2 θdφ2.

Thus we see that the t coordinate and the r coordinate terms switch signs! Remember that in GR r is
not a distance, it is a coordinate. You have to use the metric to find distances. Same with t. The minus
sign is how we recognize the time coordinate in GR, so this means that r becomes timelike and t becomes
spacelike! If you try to find the lightcones inside the black hole you see they flip over sideways!

Fig: Lightcones around and inside a black hole

The same force that moves eveyone towards the future now moves things towards r = 0, which is the
future lightcone! This one way of understanding the reason that once inside the black hole you can’t get
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out. There is no force in nature that can move you backward in time. Thus inside a hole there is no force
in nature that can move something towards larger r! Note that while proper time increases, t actually
decreases. This is not a problem since t is no longer a time dimension. It is a space dimension; r is the
time. We can see this explicitly by considering two points inside, say near r = 2 km and r = 2.1 km,
so dr = 0.1 km. Take dt = 0 and calculate the invariant interval: ds2 = +dr2/(1 − 8.85/2) = −0.0029
km < 0, that is the interval is timelike, and thus these points can be causally connected! Similarly, two
events with dr = 0 and dt 6= 0 have ds2 > 0 and therefore are spacelike separated and cannot be causally
connected. Moving straight up in the spacetimem diagram is not allowed.

The angle of the lightcone just inside rS is still 900, but rather than being squeezed, it is now wide
open. As you move in towards r = 0, the lightcone closes up, but continues to point toward r = 0. Inside
dr/dt = ±(1 − rS/r). As r → 0, dr/dt → ±∞, or dt/dr → 0, and the cone squeezes in pointing towards
the center of the hole. So while at first when you are inside the hole there some freedom of movement,
in the end you are directed directly at the center.

11.2 Orbits in the Schwarzschild metric

Let’s go back to our geodesic equations and find the orbits around a black hole or other spherical object.
So far we only considered radial orbits. To extend this to circular and eliptical orbits we will use the
method of effective potentials, which allows on discover the main types of orbits and the main points of
interest without doing the hard work of actually solving the differential equations. This is very general
technique and worth learning.

11.2.1 Effective Potential for Newtonian Orbits

First let’s do it in Newtonian mechanics, by writing the total energy E = T + V = 1

2
mv2 − GM/r

in spherical coordinates. Recall that in 3-D, v2 = ẋ2 + ẏ2 + ż2, and z = r cos θ, x = r sin θ cosφ,
y = r sin θ sin φ. Let’s simplify by considering motion in the x-y plane so z = 0, θ = π/2, and θ̇ = 0.
Then ż = 0, ẋ = ṙ cosφ−r sinφφ̇, and ẏ = ṙ sin φ+r cosφφ̇. Substituting this into the formula for kinetic
energy and using sin2 φ + cos2 φ = 1, we find:

T =
1

2
m(ṙ2 + r2φ̇2).

Next defining the angular momentum l = mvφr = mφ̇r2, so rφ̇ = l/(mr), we can write the total energy
as

E =
1

2
m

(

ṙ2 +
l2

m2r2

)

−
GMm

r
,

or

E =
1

2
m(

dr

dt
)2 + Veff ,

with

Veff = −
GMm

r
+

l2

2r2m
.

Thus we have written the equation of motion as a one dimensional equation for E = T +Veff . The value
of this is that we are very familar with the the solutions of a one dimensional equation for a particle
moving in a potential with the shape Veff . Depending on the total energy, the particle may escape the
well and travel off to infinity, or in might be trapped in the well and oscillate back and forth in the
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bottom. For small enough energy it might be at rest. So we now think of the radial coordinate r as the
one dimension and can easily understand the possible Newtonian orbits around a spherical object.

Fig: Effective potential for Newtonian Potential

To discover the possible orbits we draw a plot of r vs. the effective potential. We see that Veff drops
from infinity at r = 0, reaching a minimum at a value of r = rmin, and then rises slowly to Veff = 0 at
r = ∞. The exact shape depends upon the constants (conserved quantities) l, and E, as well as M .

The easiest solution to this one dimensional problem is the particle as rest at the minimum. The
particle just sits there, which means r = constant. This is the circular orbit of Kepler’s laws. The radius
of the circular orbit is found by finding the minimum of the effective potential by solving dVeff/dr = 0.
This gives 0 = GMm/r2− l2/(mr3), or r = GM/v2, where we substituted back in l = mvr before solving
for r. This is the result you get from F = ma, aka GMm/r2 = mv2/r. In this case the total energy is
at its minimum which is less than zero. Emin = −mv2 + 1

2
mv2 = − 1

2
mv2. Note if you had a different

value of v, that would imply a different value of l, and a different rcirc.
Another obvious solution is the particle having E < 0, so the particle oscillates around the bottom

between turning points r1 and r2 where E = 1

2
mṙ2 + Veff . These orbits are the elliptical Kepler orbits,

and the position and speed of the orbiting object at turning points can be found from the equation above.
There are also orbits that have E > 0 which can come in from infinity, reach a point of closest approach
and then return to infinity. These are the hyperbolic Kepler orbits. Finally, a particle with E = 0 will
do a similar similar thing, but the orbit will be parabolic.
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