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28 Gravitational Waves

28.1 Introduction

Newton’s law of gravity has a problem. Consider two masses M1 and M2 separated by a long distance.
According to Newton, the force between them is F = GM1M2/r2. Now suppose you move the first mass
closer. Newton’s law predicts that the force on the 2nd mass changes, and in fact changes instantly.
But that can’t happen. Things cannot communicate faster than the speed of light without violating
causality. Newton’s thus law violates causality. This is a problem, which luckily Einstein’s theory of GR
fixes. When the first mass is moved, the metric of spacetime is changed, and the solution to Einstein’s
field equations shows that this change in metric propagates outward at the speed of light. It is actually
very similar to electricity and magnetism, where if one moves a charge it causes a change electric field
that propagates outward at c. This is called electromagnetic radiation. Thus one expects that GR has
something like gravitational radiation, aka gravity waves in it.

In order find these, we can proceed in the same way as you would in E&M. In E&M you write down
Maxwell’s equations and set all the sources, e.g. charges and currents to zero. This gives the wave
equation (∇2 −

1

c2 ∂2/∂t2) ~E = 0, which has solution Ei = Ai exp(ωt − ~k · ~x); that is a sine or cosine

traveling wave moving in direction ~k, with polarization Ai. Plugging this solution into the equation gives
ω = ±ck. Since the speed of a wave is v = ω/k, this implies electromagnetic radiation travels at the
speed of v = c, the speed of light.

28.2 Linearized Weak Field GR

We would like to do the same thing with Einstein’s field equations, but as we have seen these are
substantially more complicated:

Gµν = 8πGTµν ,

where we set the cosmological constant to zero. For gravitational radiation, we want to set all 16 terms
in the stress-energy tensor Tµν to zero, and then untangle the complicated differential equations implied
in Gµν to solve for the metric gµν , where the line element we have been using is ds2 = g00dt2 + g11dx2 +
g22dy2 + g33dz2. This is hard, but can be made easier if we employ the “weak field” limit. This is an
example of perturbation theory, where we assume that whatever answer we get for gµν will be very close
to the flat space Minkowski metric ηµν , where remember η00 = −1, η11 = η22 = η33 = 1, and all other
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elements of ηµν are zero. Thus we start by writing

gµν = ηµν + hµν ,

where hµν ≪ 1. We expand out the field equations, dropping any terms of order h2 or higher. Remarkably
this gives

(

−
∂2

∂t2
+ ∇

2

)

h̄µν = −
16πG

c2
T µν ,

where h̄µν = hµν −
1

2
ηµνh, is the “transverse-traceless weak field metric”, and h = hµ

µ is the trace.

28.3 Connection with Newton

Before using this equation for gravitational waves we can make a connection with Newton by noting that
for normal slowly moving matter the only significant element of the stress-energy tensor is T 00 = ρ, the
mass density. Thus we can solve this equation using only the 00 component. If we set up a mass density
and look for a static solution, we can also set the time derivative to zero, giving

∇
2h̄00 = −16πGρ.

This is almost exactly the equation for the Newtonian potential ∇2φ = 4πGρ, where in the Newtonian
case for a spherical mass M , the gravitational potential would be φ = −GM/r. Thus we can think of
h as the gravitational potential with h̄00 = −4φ, h00 = −2φ, h11 = h22 = h33 = −2φ, and h = −4φ.
Plugging this into the line element (metric) we get ds2 = −(1+2φ)dt2 +(1−2φ)(dx2 +dy2 +dz2), where
we used our perturbation expansion, g00 = −1 + h00, g11 = 1 + h11, etc.

Finally, compare this to the Schwarzschild metric, for simplicity paying attention only to the time and
radial components, dr2 ∼ dx2+dy2+dz2. In the weak field limit one can Taylor expand the (1−2GM/r)−1

term in the Schwarzschild metric to find to find ds2 ≈ (−1+2GM/r)dt2 +(1+2GM/r)dr2 + ..., precisely
the weak field metric found above with φ substituted. Thus the connection between the Newtonian
potential and the metric becomes more clear.

28.4 Gravitational Waves

Now set T µν = 0 in the weak field Einstein equations. This gives

(

−
∂2

∂t2
+ ∇

2

)

h̄µν = 0,

again a wave equation for the 16 components of h̄µν . The solution is again sine and cosine traveling waves

h̄µν = Aµν exp(ωt − ~k · ~x),

where now the “polarization”, Aµν , of the gravity wave has more components. Again we see ω = ±k,
or the speed of gravity waves is 1 (that is c). It is worth discussing the polarization since it differs from
electromagnetism. Recall that an electromagnetic wave traveling in the z direction is transverse, meaning
it can have an “x” component or a “y” component, but no “z” component. This is set by the gauge
condition in electromagnetism. A gravity wave has more components and it’s gauge condition means that
it is quadrapolar. Traveling in the z direction it has two possible polarizations, one called + polarization
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with Axx = −Ayy and all other components zero, and the other, called ×, with Axy = Ayx and all other
components zero (note I am calling A11 as Axx, etc.) This polarization has a big effect on what gravity
waves do.

For example, consider a gravity wave traveling in the z direction with + polarization. The spatial
part of the metric will be something like: ds2 = (1 + h11)dx2 + (1 + h22)dy2 + (1 + h33)dz2, where we
should substitute h11 = A11 sin(ωt), h22 = hyy = Ayy sin(ωt), h33 = Azz sin(ωt), and we assume we are

at z = 0, so we can set ~k · ~x = 0. This gives: ds2 = (1 + h sin(ωt))dx2 + (1 − h sin(ωt))dy2 + dz2 − ...dt2.
This means that there will be no change in the z direction, and opposite sinusoidal motion in the x and
y directions. What will this do?

Imagine a circular ring of test particles in the x-y plane. As the gravity wave comes through what
will happen? What will the forces on the particles be? Zero of course! In GR gravity is not a force! In
fact, the coordinate positions (x, y, z) will not change at all. But using the metric above we see that the
distances between the particles will move! This is the effect of the gravity wave passing by. When the
sin(ωt) in the x-direction is maximum (ωt = π/2), it will be at a minimum in the y-direction. Thus the
circle of test particles will alternatively squeeze and stretch in the x and y directions. You can work out
the × polarization also, it is similar except the squeezing and stretching at a 450 angle.

Figure: Effect of passing gravitational wave on ring of test particles

So to detect gravity waves all you have to do is measure the distances between test masses. They
should move in the odd pattern just described when a gravity wave comes by. Do we expect gravity waves
to exist? Yes of course. As we said at the beginning there has to be gravity waves whenever masses move,
just as in electromagnetism there has to be electromagnetic waves whenever charges move. But be careful.
A charge moving at uniform velocity does cause a change in the electric field to propagate outward, but
does not radiate electromagnetic wave waves that carry energy. It takes an accelerating charge to create
electromagnetic waves. Likewise it takes an accelerating movement of mass to create a gravitational wave.
In fact, due to the quadrapolar nature of the polarization, it takes a quadrapolar motion to do it. For
example, an expanding spherical shell of mass has no quadrapole moment and therefore does not emit
gravitational waves. However, if two masses move back and forth (say on a spring) or orbit around each
other (like two stars) then there is a quadrapole moment and there is gravitational radiation.

The formula for the strain (i.e. h, i.e. change in the metric) when two object of mass M orbit each
other is roughly:

A ∼
GMl2

0
ω2

rc4
,

where l0 is the rough size of the orbit, ω is the angular velocity of the orbit, and r is your distance from
the system. We can make a good rule of thumb by noting that Schwarzschild radius GM/c2 ≈ rS , and
the speed of orbit is roughly v ≈ l0ω. so

A ≈

(rS

r

)(v

c

)2

.

Consider then a barbell with two 100 kg masses separated by 1 m, spinning at 10 m/s. What is the size
of the metric distortion caused by the resulting gravitational wave? Using rS = 3km(M/M⊙),

h ∼ A ∼ (
3000m

1m
)(

100kg

2 × 1030kg
)(

10m/s

3 × 108m/s
)2 ∼ 10−40.

Recall this A is the fractional change in distance between two test particles sitting 1 m from the barbells.
This is an absolutely tiny distortion, much much less than the radius of an atomic nucleus. So this is not
measurable.
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28.5 Detecting Gravitational Waves

Can one think of anything that would give rise to to a measurable gravitational wave? Well, in the
equation above, we need to increase both the masses and speeds involved. How about two neutron stars
(masses 1.4 M⊙) orbiting very close to each other? In 1974, Hulse and Taylor discovered a binary pulsar,
PSR 1913+16. This is system of two neutrons stars orbiting other with a period of 7.75 hours. The system
is about 6.4 kpc (21,000 light years) away from us, so plugging these numbers in you find A ∼ 10−23,
a much bigger value. But over one meter this is a change in distance of less than 100 million times the
radius of a proton, unmeasurable with current equipment. Still the 1993 Nobel prize was given to Hulse
and Taylor for their discovery of gravitational radiation using this system. Why?

Well the beauty of this system is that one of the neutron stars is a pulsar. It is rapidly spinning
and beaming us with a period of P = 0.059029997929613(7) seconds. This is an incredibly accurately
measured period, and for a long time this system was more stable and accurate than any atomic clock
here on earth. Using this information and the measured orbital period everything about this system
could be understood. It all checked out using Einstein gravity, It was easy to also detect that this well
measured period changes with time in a regular manner, at a rate of about, dP/dt = 8.62713 × 10−18.
Why does the period change? Something is bleeding energy from the system. If one plots the period over
a period of years it falls in exactly the manner predicted by GR, but only if one includes the energy lost
from gravitational radiation. Thus this was an indirect measurement of gravitation wave emission. To
this day, this system (and others like it) are the only “detections” we have of gravitational radiation.

Figure: Orbital decay of PSR B1913+16.The data points indicate the observed change in

the epoch of periastron with date while the parabola illustrates the theoretically expected

change in epoch according to general relativity.

Is there hope to ever directly detect a gravitational wave? Well we need to be able to measure strains of
around 10−23. Of course if objects were closer than PSR 1913+16 or involved heavier objects (e.g. super
massive black holes weighing billions of solar masses) then larger values of h might be produced. The
current leading experiment is called LIGO, the Laser Interferometer Gravitational-Wave Observatory. It
is two large Michelson interferometers each about 4 km long. One interferometer is in Lousiana and the
other is in Washington state. Each interferometer has large test masses carefully hung in vacuum pipes 4
km apart in an L shape. There are mirrors attached to the test masses and laser systems that carefully
measure the distances between these test masses. If a gravity wave comes from outer space onto the
detector, one arm of the interferometer will stretch while the other shrinks. This shrinking/stretching
shape changing will reoccur with the frequency of the gravity wave. For instance, for the binary pulsar,
the period will be 7.5 hours. However, LIGO cannot detect this kind of period; its sensitivity is only to
waves with frequencies between 30 Hz and 7000 Hz. There are very few astronomical sources of strong
gravity waves that emit at these frequencies, so in fact, there really is almost nothing that LIGO can
detect. LIGO started in 2002 and still has not detected anything except noise. In fact, when trying to
measure distances to a tiny fraction of the radius of the proton, there are innumerable sources of noise:
thermal motion, ground motion, traffic, logging, ocean waves, etc, etc. etc. This is why there are two
interferometers separated by about 3000 km. A gravity wave from space will hit both detectors, while
noise sources will affect one but not the other. Only signals that appear in both detectors are being
considered as real gravity waves. However, there is some hope for LIGO since they are upgrading it.
This will make it sensitive to strains about 10 times smaller, and there are actual astronomical sources
of gravity waves in the frequency band that might be detected.

Finally, there is an exciting proposed space mission called LISA, the Laser Interferometer Space
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Antenna, that if launched, would give huge numbers of detections. Here the interferometer arms would
be around 5 million km! This long distance moves the range of frequency sensitivity down to between
10−5 Hz and 0.1 Hz, just in the range of binary pulsars, orbiting black holes and other likely astronomical
phenomena. Here the interferometer is made of 3 free flying spacecraft orbiting the Sun (not the Earth!)
and the lasers will be measuring the distances between the test masses made of pure gold and platinum
to about 20 picometers, for a strain sensitivity of around 10−23 as required.
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