CE 530 Molecular Simulation

Lecture 11

Molecular Dynamics Simulation

David A. Kofke
Department of Chemical Engineering
SUNY Buffalo

kofke(@eng.buffalo.edu

Review and Preview
O MD of hard disks

°* Intuitive
* collision detection and impulsive dynamics

O Monte Carlo

 convenient sampling of ensembles
* no dynamics

* biasing possible to improve performance

O Molecular dynamics

* equations of motion

integration schemes

evaluation of dynamical properties
° extensions to other ensembles

* focus on atomic systems for now

Classical Equations of Motion

O Several formulations are in use
* Newtonian
* Lagrangian
* Hamiltonian
O Advantages of non-Newtonian formulations
* more general, no need for “fictitious” forces
* better suited for multiparticle systems
* better handling of constraints

* can be formulated from more basic postulates

O Assume conservative forces

—>

F=-VU Gradient of a scalar potential energy

Newtonian Formulation

O Cartesian spatial coordinates r. = (Xx,,y;,z;) are primary variables
* for N atoms, system of N 2nd-order differential equations

2

m dl‘z l l

O Sample application: 2D motion in central force field

mi=F-&, =—f(r)F-&, = —xf \/x2+y2)

. R . [2 2D
my=F-e,=—f(r)r-&,=—yf(yx +y)

Polar coordinates are more natural

and convenient

mr29 = (¢ | constant angular momentum

62

a3 || fictitious (centrifugal) force

mi' =—f(r)+

Generalized Coordinates

O Any convenient coordinates for description of particular system
* use q; as symbol for general coordinate

* examples

- diatomic {qla- . -aq6} - {Xc0m9 YCom’ Zcom’ I.127 q, f}
= 2-D motion in central field {q,, q,} = {r, a}

./
O Kinetic energy

* general quadratic form

K =Moy(@)+ 2, M (@3 +5 2, > M@ g
'

usually vanish
* examples

=* rotating diatomic K= %m (q12 + q’% + c]?)+ ém[fz + 1767 + (7sin 9)2¢2]

> 2-D central motion K = %m i+ rzéz)

Lagrangian Formulation

O Independent of coordinate system
O Define the Lagrangian

* L(q,4)=K(q,9)-U(q)
O Equations of motion

dfoL) oL o 1N
dt\ 9q; | 9q;

* N second-order differential equations
O Central-force example

L =%m 7 +r292)—U(r)

d (L) oL T d(dL) oL
afoL)_ob — rf? — B e P
dt(afj or | Emre) dr(ae) 26

Fr :_er =—f(l")

= %‘(mrzé)= 0

Hamiltonian Formulation 1. Motivation

O Appropriate for application to statistical mechanics and quantum
mechanics

O Newtonian and Lagrangian viewpoints take the ¢, as the
fundamental variables
* N-variable configuration space
* g; appears only as a convenient shorthand for dq/dt
* working formulas are 2nd-order differential equations
O Hamiltonian formulation seeks to work with 1st-order
differential equations
* 2N variables
* treat the coordinate and its time derivative as independent variables

* appropriate quantum-mechanically

Hamiltonian Formulation 2. Preparation

O Mathematically, Lagrangian treats g and ¢ as distinct
¢ L(q],q],t)

oL

* identify the generalized momentum as | p; = FY
1

°eg. iszK—Uz%mq’z—U(q); p =0L/dg=mq

* Lagrangian equations of motion ;"= 4
qj

O We would like a formulation in which p is an independent
variable

° p,is the derivative of the Lagrangian with respect to di, and we re
looking to replacedi with p,

* weneed ...?

Hamiltonian Formulation 3. Defintion

O ...a Legendre transform!
O Define the Hamiltonian, H

H(q,p)=—[L(q Q)—Zpﬂ'f]
=—-K(q, Q)+U(‘1)+279'J
J
=—Y"a;q; +U(Q)+Y.(2a;4;)4;
=+Y a;4; +U(q)

=K+U
O H equals the total energy (kinetic plus potential)

Hamiltonian Formulation 4. Dynamics

O Hamilton’s equations of motion

Differential change in L

* From Lagrangian equations, written in terms of momentum

10

Conservation of energy

.dq .dp s ..
= pdt th pq+ qp

ap =p= B_L Lagrange’s equation
oL oL . dt 0 i
dL="—"dqg+— dg q of motion
— ; P==" Definition of momentum
pdq+ pdq g
Legendre transform
H=—(L- p¢
e
dH =—(pdq—gqdp (| 4=+5"
dH =—pdg+ gdp < al;[Hamilton’s equations of motion
p=—"-
{ dq
dH

11

Hamiltonian Formulation 5. Example

O Particle motion in central force field

3

H=K+U
Py . Ps
=14 +U
2m 2mr? ")

. OH lﬂ:& 2d9=p9
q_+ap ()dl m ()dl‘ mr2
OH | dp, _ Do dpy

p » ()dz‘ 3 f(r) ()dt

Lagrange’s equations

Fr :_er =—f(7‘)

mi‘ = mré® — f(r)

% (mr29)= 0

O Equations no simpler, but theoretical basis is better

12

Phase Space (again)

O Return to the complete picture of phase space

* full specification of microstate of the system is given by the values of
all positions and all momenta of all atoms
= G=(pN,r)

* view positions and momenta as completely independent coordinates

= connection between them comes only through equation of motion

O Motion through phase space
* helpful to think of dynamics as “simple’” movement through the high

-dimensional phase space
=% facilitate connection to quantum mechanics
=% basis for theoretical treatments of dynamics
=> understanding of integrators

Integration Algorithms

O Equations of motion in cartesian coordinates

ﬁ _P; r=(r.",) . .
dt m 2-dimensional space (for example)
p=(p))
P,
) Fj N
d F; = ZF,] pairwise additive forces
O

%]

o,

* minimal need to compute forces (a very expensive calculation)

O Desirable features of an integrator

* good stability for large time steps

* good accuracy
* conserves energy and momentum

© time-reversible More on these later
* area-preserving (symplectic)

13

14

Verlet Algorithm
1. Equations

O Very simple, very good, very popular algorithm

O Consider expansion of coordinate forward and backward in time
r(t+680) =r(t)+Lp()dt + LF(©)8t% + L¥()6r +0(51Y)

r(t—581) =r(t) - Lp()8t + 5L F()d1* - L (6)51 + 0(51Y)

O Add these together
r(t+8t) +r(t—6t) = 2r(t) + LF ()8t

O Rearrange

r(t+681)=2r(t)—r(t - 61)+ LF ()5t

+0(8t™)

+0(8th)

* update without ever consulting velocities!

15

Verlet Algorithm 2. Flow diagram

One MD Cycle

. Conﬁguratlon. r() Entire Simulation
Previous configuration r(t-dt)

Initialization

&

«

One fOI‘.CG > C()mpute forces F(t) Reset block sums
evaluation

per time step | ON all atoms using r(t) f -

New configuration

\ 4

1 move per cycle

Advance all positions according to :

Add to block sum
r(t+dt) = 2r(t)-r(t-dt)+F(t)/m dt Prerer ey
| Compute block average
—
Add to block sum .
l Compute final results

No End of Yes f Block J
block? Laverages

16

Verlet Algorithm 2. Flow Diagram

t-dt t t+dt
r Given current position and
position at end of previous
\ time step
K

Schematic from Allen & Tildesley, Computer Simulation of Liquids

17

Verlet Algorithm 2. Flow Diagram

t-dt t t+dt
r Compute the force at the
current position
A%
K

Schematic from Allen & Tildesley, Computer Simulation of Liquids

18

Verlet Algorithm 2. Flow Diagram

t-dt t t+dt
—T — I,
r S Compute new position from
L/ present and previous
A / positions, and present force
/
K

Schematic from Allen & Tildesley, Computer Simulation of Liquids

19

Verlet Algorithm 2. Flow Diagram

t-2dt t-dt t t+dt
r Advance to next time step,
repeat
A%
K

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Verlet Algorithm 3. Java Code

—=—*————

20

Verlet Algorithm
3. Relevant Methods 1n Java Code

public class IntegratorVerlet extends Integrator

21

//Performs one timestep increment in the Verlet algorithm
public void doStep(double tStep) {

}

atomIterator.reset() ;
while (atomIterator.hasNext()) { //zero forces on all atoms

((Agent) atomIterator.next() .ia) .force.E(0.0); //integratorVerlet.Agent keeps a force Vector

}

pairlterator.allPairs (forceSum); //sum forces on all pairs

double t2 = tStep*tStep;

atomIterator.reset() ;

while (atomIterator.hasNext()) { //loop over all atoms, moving according to Verlet
Atom a = atomIterator.next();
Agent agent = (Agent)a.ia;

Space.Vector r = a.position(); //current position of the atom
temp.E(r) ; //save it

r.TE(2.0) ; //2*r

r.ME (agent.rLast) ; //2*r-rLast

agent.force.TE (a.rm() *t2) ; // £/m dt~2

r.PE (agent. force) ; //2*r - rLast + £/m dt~2
agent.rlLast.E (temp) ; //rlLast gets present r

}

return;

Verlet Algorithm
3. Relevant Methods 1n Java Code

public class IntegratorVerlet extends Integrator

22

// (anonymous) class for incrementing the sum of the forces on each atom

forceSum = new AtomPair.Action() {
private Space.Vector f = simulation() .space.makeVector() ;
public void action(AtomPair pair) ({
PotentialSoft potential = (PotentialSoft)simulation().getPotential (pair) //identify pot’l
f.E(potential. force (pair)) ; //compute force of atoml on atom2
((Agent)pair.atoml () .ia) .force.PE(f); //increment atoml force
((Agent)pair.atom2 () .ia) .force.ME (f) ; //increment atom2 force

}
};

//Agent class for IntegratorVerlet; stores useful quantities in each Atom
public final static class Agent implements Integrator.Agent ({

public Atom atom;

public Space.Vector force; //used to accumulate the force on the atom
public Space.Vector rLast; //holds the position of the atom at the last step

public Agent (Atom a) { //constructor
atom = a;
force = atom.parentMolecule () .parentPhase () .parentSimulation. space.makeVector () ;
rLast = atom.parentMolecule () .parentPhase () .parentSimulation.space.makeVector () ;

23

Forces 1. Formalism

X
O Force is the gradient of the potential 12

Yi2

I
F, ; =-Vu(n,) 12

ou(r ou(r
Forceon 1, = —Me —Me

x y 5 512
due to 2 dy My Ny = [(xz —x) "+ —n)]
_ _dulrip)| 9y +8ﬂey
dn, axl a)ﬁ 4
i — Energy
SPAGLY [x12ex + ylZeyj| — Force
5P
| _\
F, ,,=-F_, 0 |
N W—
| | | |
1.0 1.5 2.0 2.5

Separation, r/o

Forces 2. LLJ Model

O Force is the gradient of the potential
/(1)

5P

k== [x12ex + J’1zey]

e.g., Lennard-Jones model

24

X1

Yi2
I

Ny = [(Xz —Xl)z +(yy — Jﬁ)z]m

o7]

__du
Jr)==—

48¢ 0')13 1(6)7:| 2]
=4+ || = | ===
o r 2\ r \ |

— Energy
— Force

0

4]

48| O ! o i
Es==—>l | 5 [xlzex T y12ey:|
o 2 o

T T T
1.5 2.0 2.5

Separation, r/o

Forces 3. Java Code

—=—*————

25

26

Forces
3. Relevant Methods from Java Code

public class PotentiallJ implements PotentialSoft

//Space.Vector used to compute and return a force
private Space.Vector force = Simulation.space.makeVector() ;

public Space.Vector force (AtomPair pair) {

double r2 = pair.r2(); //squared distance between pair of atoms
if(r2 > cutoffDiameterSquared) {force.E(0.0);} //outside cutoff; no interaction
else {

double s2 = sigmaSquared/r2; // (sigma/r)”*2

double s6 = s2*s2*s2; // (sigma/r)*6

force.E(pair.dr()) ; // £ = (x12 ex + yl2 ey) (vector)

force.TE (-48*s2*s6* (s6-0.5) /sigmaSquared) ;
// £ *= -48%* (sigma/r)~8 * [(sigma/r)~6 - 1/2] / sigma”2
}

return force;

27

Verlet Algorithm. 4. Loose Ends

O Initialization
* how to get position at “previous time step’’ when starting out?

* simple approximation

r(ty —ot) =r(ty) — v(ty)ot

O Obtaining the velocities
* not evaluated during normal course of algorithm

* needed to compute some properties, e.g.
= temperature

= diffusion constant

* finite difference
V() = zi&[r(t +81) —r(1 — 61) |+ O(51%)

28

Verlet Algorithm 5. Performance Issues

O Time reversible
* forward time step
r(t+681)=2r(t)—r(t - 61)+ LF ()5t
° replace df with —dt
r(t+(=80) =2r()—r(t — (-60) + L F()(-61)°
r(t—5t)=2r(t) - x(t + 8) + LF (181>

* same algorithm, with same positions and forces, moves system
backward in time

O Numerical imprecision of adding large/small numbers
O(dt)) O(dt))

r(t+8t) = r(t) B r(e) —r(t — 8)HLF ()8t

[7 /

0(dt?) O(dt) 0(dt2)

Initial Velocities

(from Lecture 3)

O Random direction
* randomize each component independently

* randomize direction by choosing point on spherical surface

O Magnitude consistent with desired temperature. Choices:

* Maxwell-Boltzmann: proi(v,)e< exp —%mvﬁ/ kT)
« Uniform over (-1/2,+1/2), then scale so that). Vi =kT/m
* Constant at v, =INkT/m

* Same for y, z components

O Be sure to shift so center-of-mass momentum 1is zero

Px Eﬁzpi,x
pi,x — pi,x _Px

29

30

Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(t+580) = v(t -0+ LF(1)dt

Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(1 +580) =|v(t =161+ LF(1)dt

O Mathematically equivalent}%\/erlet algorithm

r(t+60) =r(0)+| v(t - 166 + L F(1)6t |61

31

Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(1 +580) =|v(t =161+ LF(1)dt

O Mathematically equivalent}%\/erlet algorithm

r(t+60) =r(0)+| v(t - 166 + L F(1)6t |61
T

f N
r(t) as eval'uated from r(£) = £(t — 51)+ v(t — L 51)51
previous time step 2

Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(1 +301) =|v(1 =160 + L F(1)dt

O Mathematically equivalent}%\/erlet algorithm

r(t+60) =r(0)+| v(t - 166 + L F(1)6t |61
T

f N
r(t) as eval'uated from r(£) = £(t — 51)+ v(t — L 51)51
previous time step 2

r(t+0t)=r(t)+ [(r(t) —r(t—061))+ %F(z‘)&z]

Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(1 +301) =|v(1 =160 + L F(1)dt

O Mathematically equivalent}%\/erlet algorithm

r(t+60) =r(0)+| v(t - 166 + L F(1)6t |61
T

- R
r(t) as eval'uated from r(£) = £(t — 51)+ v(t — L 51)51
previous time step 2

r(t+0t)=r(t)+ [(r(t) —r(t—061))+ %F(r)&z]

r(t+61) =2r(t) —r(t - 61) + iF(t)&z original algorithm

35

Leapirog Algorithm 2. Flow Diagram

t-dt t t+dt
r Given current position, and
velocity at last half-step
A\
K

Schematic from Allen & Tildesley, Computer Simulation of Liquids

36

Leapirog Algorithm 2. Flow Diagram

t-dt

t

t+dt

Compute current force

Schematic from Allen & Tildesley, Computer Simulation of Liquids

37

Leapirog Algorithm 2. Flow Diagram

t-dt t t+dt

Compute velocity at
next half-step

<

Schematic from Allen & Tildesley, Computer Simulation of Liquids

38

Leapirog Algorithm 2. Flow Diagram

t-dt t t+dt
r /: Compute next position
v /
F

Schematic from Allen & Tildesley, Computer Simulation of Liquids

39

Leapirog Algorithm 2. Flow Diagram

t-2dt t-dt t t+dt
r Advance to next time step,
repeat
A%
K

Schematic from Allen & Tildesley, Computer Simulation of Liquids

40

Leapirog Algorithm. 3. Loose Ends

O Initialization

* how to get velocity at “previous time step”’ when starting out?

* simple approximation

v(tg = 61) = v(ty) — L F(ty) 5 5t

O Obtaining the velocities

° interpolate

V(1) = %[V(z‘ +160+v(@e-160]

41

Velocity Verlet Algorithm

O Roundoff advantage of leapfrog, but better treatment of
velocities
O Algorithm
r(t+681) =r(t) + v(1)5t + L F()St>
V(1 +01) = v(t) +5-[F(t) + F(1 + 61) |t

O Implemented in stages
* evaluate current force
° compute r at new time
* add current-force term to velocity (gives v at half-time step)
* compute new force

* add new-force term to velocity

O Also mathematically equivalent to Verlet algorithm
(in giving values of r)

42

Velocity Verlet Algorithm
2. Flow Diagram

t-dt t t+dt

Given current position,

velocity, and force

Schematic from Allen & Tildesley, Computer Simulation of Liquids

43

Velocity Verlet Algorithm
2. Flow Diagram

Compute new position

t-dt { t+dt
r >
17
v /
P /

Schematic from Allen & Tildesley, Computer Simulation of Liquids

44

Velocity Verlet Algorithm
2. Flow Diagram

t-dt

t

t+dt

Compute velocity at half step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

45

Velocity Verlet Algorithm
2. Flow Diagram

t-dt

t

t+dt

Compute force at new position

Schematic from Allen & Tildesley, Computer Simulation of Liquids

46

Velocity Verlet Algorithm
2. Flow Diagram

Compute velocity at full step

t-dt t t+dt
r
v /
P /

Schematic from Allen & Tildesley, Computer Simulation of Liquids

47

Velocity Verlet Algorithm
2. Flow Diagram

t-2dt t-dt t t+dt

Advance to next time step,

repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids

48

Other Algorithms

O Predictor-Corrector
* not time reversible

* easier to apply in some instances
=¥ constraints

=¥ rigid rotations
O Beeman
* better treatment of velocities

O Velocity-corrected Verlet

Summary

O Several formulations of mechancs

* Hamiltonian preferred
=* independence of choice of coordinates
=> emphasis on phase space
O Integration algorithms
* Calculation of forces

* Simple Verlet algorithsm
=+ Verlet
= Leapfrog
= Velocity Verlet

O Next up: Calculation of dynamical properties

49

