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Review and Preview 
 MD of hard disks 

•  intuitive 
•  collision detection and impulsive dynamics 

 Monte Carlo 
•  convenient sampling of ensembles 
•  no dynamics 
•  biasing possible to improve performance 

 Molecular dynamics 
•  equations of motion 
•  integration schemes 
•  evaluation of dynamical properties 
•  extensions to other ensembles 
•  focus on atomic systems for now 
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Classical Equations of Motion 

 Several formulations are in use 
•  Newtonian 
•  Lagrangian 
•  Hamiltonian 

 Advantages of non-Newtonian formulations 
•  more general, no need for “fictitious” forces 
•  better suited for multiparticle systems 
•  better handling of constraints 
•  can be formulated from more basic postulates 

 Assume conservative forces 
Gradient of a scalar potential energy 
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Newtonian Formulation 

 Cartesian spatial coordinates ri = (xi,yi,zi) are primary variables 
•  for N atoms, system of N 2nd-order differential equations 

 Sample application:  2D motion in central force field 

•  Polar coordinates are more natural  
and convenient 

r	



constant angular momentum 

fictitious (centrifugal) force 
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Generalized Coordinates 

 Any convenient coordinates for description of particular system 
•  use qi as symbol for general coordinate 
•  examples 

➺ diatomic {q1,…,q6} = {xcom, ycom, zcom, r12, q, f} 
➺ 2-D motion in central field {q1, q2} = {r, q} 

 Kinetic energy 
•  general quadratic form  

•  examples 
➺ rotating diatomic 

➺ 2-D central motion  

r q 

f 

usually vanish 
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Lagrangian Formulation 
 Independent of coordinate system 
 Define the Lagrangian 

•    
 Equations of motion 

•  N second-order differential equations 
 Central-force example  



7 

Hamiltonian Formulation 1. Motivation 

 Appropriate for application to statistical mechanics and quantum
 mechanics 

 Newtonian and Lagrangian viewpoints take the qi as the
 fundamental variables 
•  N-variable configuration space 
•     appears only as a convenient shorthand for dq/dt 
•  working formulas are 2nd-order differential equations 

 Hamiltonian formulation seeks to work with 1st-order
 differential equations 
•  2N variables 
•  treat the coordinate and its time derivative as independent variables 
•  appropriate quantum-mechanically           
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Hamiltonian Formulation 2. Preparation 

 Mathematically, Lagrangian treats q and    as distinct 
•    

•  identify the generalized momentum as 

•  e.g.  

•  Lagrangian equations of motion 
 We would like a formulation in which p is an independent

 variable 
•  pi is the derivative of the Lagrangian with respect to    , and we’re

 looking to replace     with pi 
•  we need …?    
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Hamiltonian Formulation 3. Defintion 

 …a Legendre transform! 
 Define the Hamiltonian, H 

 H equals the total energy (kinetic plus potential) 
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Hamiltonian Formulation 4. Dynamics 

 Hamilton’s equations of motion 
•  From Lagrangian equations, written in terms of momentum 

Lagrange’s equation
 of motion	



Definition of momentum	



Differential change in L	



Legendre transform	



Hamilton’s equations of motion	



Conservation of energy	
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Hamiltonian Formulation 5. Example 

 Particle motion in central force field 

 Equations no simpler, but theoretical basis is better 

r	



Lagrange’s equations	
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Phase Space (again) 

 Return to the complete picture of phase space 
•  full specification of microstate of the system is given by the values of

 all positions and all momenta of all atoms 
➺ G = (pN,rN) 

•  view positions and momenta as completely independent coordinates 
➺ connection between them comes only through equation of motion 

 Motion through phase space 
•  helpful to think of dynamics as “simple” movement through the high

-dimensional phase space 
➺ facilitate connection to quantum mechanics 
➺ basis for theoretical treatments of dynamics 
➺ understanding of integrators 

G	
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Integration Algorithms 
 Equations of motion in cartesian coordinates 

 Desirable features of an integrator 
•  minimal need to compute forces (a very expensive calculation) 
•  good stability for large time steps 
•  good accuracy  
•  conserves energy and momentum 
•  time-reversible 
•  area-preserving (symplectic) 

pairwise additive forces	



2-dimensional space (for example)	



More on these later	



F 
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Verlet Algorithm 
1. Equations 

 Very simple, very good, very popular algorithm 
 Consider expansion of coordinate forward and backward in time 

 Add these together 

 Rearrange 

•  update without ever consulting velocities! 
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Verlet Algorithm  2. Flow diagram 

Configuration r(t) 
Previous configuration r(t-dt) 

Compute forces F(t) 
on all atoms using r(t) 

Advance all positions according to 
r(t+dt) = 2r(t)-r(t-dt)+F(t)/m dt2 

Add to block sum 

End of
 block? 

No Block 
averages 

Yes 

Initialization 

Reset block sums 

Compute block average 

Compute final results 

blocks per simulation 

Entire Simulation 

1 move per cycle 
New configuration 

cycles per block 

Add to block sum 

One MD Cycle 

One force
 evaluation

 per time step	
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Verlet Algorithm  2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Given current position and
 position at end of previous
 time step	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Verlet Algorithm  2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Compute the force at the
 current position	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Verlet Algorithm  2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Compute new position from
 present and previous
 positions, and present force	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 



19 

Verlet Algorithm  2. Flow Diagram 

r 

v 

F 

  t-2dt       t-dt         t          t+dt 

Advance to next time step,	


repeat	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Verlet Algorithm 3. Java Code 



21 Verlet Algorithm  
3. Relevant Methods in Java Code 

//Performs one timestep increment in the Verlet algorithm   
public void doStep(double tStep) { 

  atomIterator.reset(); 
  while(atomIterator.hasNext()) {   //zero forces on all atoms 
   ((Agent)atomIterator.next().ia).force.E(0.0);  //integratorVerlet.Agent keeps a force Vector 
  } 
  pairIterator.allPairs(forceSum); //sum forces on all pairs 

  double t2 = tStep*tStep; 
  atomIterator.reset(); 
  while(atomIterator.hasNext()) {  //loop over all atoms, moving according to Verlet 
      Atom a = atomIterator.next(); 
      Agent agent = (Agent)a.ia; 
      Space.Vector r = a.position();  //current position of the atom 
      temp.E(r);                      //save it 
      r.TE(2.0);                      //2*r 
      r.ME(agent.rLast);              //2*r-rLast 
      agent.force.TE(a.rm()*t2);      // f/m dt^2 
      r.PE(agent.force);              //2*r - rLast + f/m dt^2 
      agent.rLast.E(temp);            //rLast gets present r 
  } 
  return; 
} 

public class IntegratorVerlet extends Integrator  
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3. Relevant Methods in Java Code 

//(anonymous) class for incrementing the sum of the forces on each atom 
forceSum = new AtomPair.Action() { 
  private Space.Vector f = simulation().space.makeVector(); 
  public void action(AtomPair pair) { 
  PotentialSoft potential = (PotentialSoft)simulation().getPotential(pair) //identify pot’l 
  f.E(potential.force(pair));           //compute force of atom1 on atom2 
  ((Agent)pair.atom1().ia).force.PE(f); //increment atom1 force 
  ((Agent)pair.atom2().ia).force.ME(f); //increment atom2 force 
  } 
}; 

//Agent class for IntegratorVerlet; stores useful quantities in each Atom 
public final static class Agent implements Integrator.Agent {   
        public Atom atom; 
        public Space.Vector force; //used to accumulate the force on the atom 
        public Space.Vector rLast; //holds the position of the atom at the last step 

        public Agent(Atom a) {     //constructor 
            atom = a; 
            force = atom.parentMolecule().parentPhase().parentSimulation.space.makeVector(); 
            rLast = atom.parentMolecule().parentPhase().parentSimulation.space.makeVector(); 
        } 
    } 

public class IntegratorVerlet extends Integrator  
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Forces 1. Formalism 
 Force is the gradient of the potential 

2 

1 

r12 

x12 
y12 

Force on 1,
 due to 2	
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Forces 2. LJ Model 
 Force is the gradient of the potential 

2 

1 

r12 

x12 
y12 

e.g., Lennard-Jones model	





25 

Forces 3. Java Code 
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Forces 
3. Relevant Methods from Java Code 

public class PotentialLJ implements PotentialSoft  

//Space.Vector used to compute and return a force 
private Space.Vector force = Simulation.space.makeVector(); 

public Space.Vector force(AtomPair pair) { 
  double r2 = pair.r2();      //squared distance between pair of atoms 
  if(r2 > cutoffDiameterSquared) {force.E(0.0);} //outside cutoff; no interaction 
  else { 
    double s2 = sigmaSquared/r2;  // (sigma/r)^2 
    double s6 = s2*s2*s2;         // (sigma/r)^6 
    force.E(pair.dr());           // f = (x12 ex + y12 ey)  (vector) 
    force.TE(-48*s2*s6*(s6-0.5)/sigmaSquared);  
                       // f *= -48*(sigma/r)^8 * [(sigma/r)^6 - 1/2] / sigma^2 
  } 
  return force; 
}             
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Verlet Algorithm.  4. Loose Ends 

 Initialization 
•  how to get position at “previous time step” when starting out? 
•  simple approximation 

 Obtaining the velocities 
•  not evaluated during normal course of algorithm 
•  needed to compute some properties, e.g. 

➺ temperature 
➺ diffusion constant 

•  finite difference 
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Verlet Algorithm 5. Performance Issues 

 Time reversible 
•  forward time step 

•  replace dt with -dt 

•  same algorithm, with same positions and forces, moves system
 backward in time 

 Numerical imprecision of adding large/small numbers 

O(dt0) O(dt0) 

O(dt1) 

O(dt2) 

O(dt1) 
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Initial Velocities 
(from Lecture 3) 

 Random direction 
•  randomize each component independently 
•  randomize direction by choosing point on spherical surface 

 Magnitude consistent with desired temperature.  Choices: 
•  Maxwell-Boltzmann: 
•  Uniform over (-1/2,+1/2), then scale so that  
•  Constant at  
•  Same for y, z components 

 Be sure to shift so center-of-mass momentum is zero 
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Leapfrog Algorithm 

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0) 

 Algorithm 
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Leapfrog Algorithm 

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0) 

 Algorithm 

 Mathematically equivalent to Verlet algorithm  
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Leapfrog Algorithm 

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0) 

 Algorithm 

 Mathematically equivalent to Verlet algorithm  

r(t) as evaluated from
 previous time step 
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Leapfrog Algorithm 

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0) 

 Algorithm 

 Mathematically equivalent to Verlet algorithm  

r(t) as evaluated from
 previous time step 
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Leapfrog Algorithm 

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0) 

 Algorithm 

 Mathematically equivalent to Verlet algorithm  

r(t) as evaluated from
 previous time step 

original algorithm 



35 

Leapfrog Algorithm  2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Given current position, and
 velocity at last half-step	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Leapfrog Algorithm  2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Compute current force	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Leapfrog Algorithm  2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Compute velocity at
 next half-step	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Leapfrog Algorithm  2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Compute next position	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Leapfrog Algorithm  2. Flow Diagram 

r 

v 

F 

  t-2dt       t-dt         t          t+dt 

Advance to next time step,	


repeat	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Leapfrog Algorithm.  3. Loose Ends 

 Initialization 
•  how to get velocity at “previous time step” when starting out? 
•  simple approximation 

 Obtaining the velocities 
•  interpolate 
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Velocity Verlet Algorithm 
 Roundoff advantage of leapfrog, but better treatment of

 velocities 
 Algorithm 

 Implemented in stages 
•  evaluate current force 
•  compute r at new time 
•  add current-force term to velocity (gives v at half-time step) 
•  compute new force 
•  add new-force term to velocity 

 Also mathematically equivalent to Verlet algorithm  
(in giving values of r) 
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Velocity Verlet Algorithm   
2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Given current position,
 velocity, and force	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Velocity Verlet Algorithm   
2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Compute new position	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Velocity Verlet Algorithm   
2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Compute velocity at half step	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Velocity Verlet Algorithm   
2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Compute force at new position	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Velocity Verlet Algorithm   
2. Flow Diagram 

r 

v 

F 

    t-dt         t          t+dt 

Compute velocity at full step	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Velocity Verlet Algorithm   
2. Flow Diagram 

r 

v 

F 

  t-2dt       t-dt         t          t+dt 

Advance to next time step,	


repeat	



Schematic from Allen & Tildesley, Computer Simulation of Liquids 
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Other Algorithms 

 Predictor-Corrector 
•  not time reversible 
•  easier to apply in some instances 

➺ constraints 
➺ rigid rotations 

 Beeman 
•  better treatment of velocities 

 Velocity-corrected Verlet 
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Summary 

 Several formulations of mechancs 
•  Hamiltonian preferred  

➺ independence of choice of coordinates 
➺ emphasis on phase space 

 Integration algorithms 
•  Calculation of forces 
•  Simple Verlet algorithsm 

➺ Verlet   
➺ Leapfrog 
➺ Velocity Verlet 

 Next up:  Calculation of dynamical properties 


