
1

CE 530 Molecular Simulation

Lecture 11
Molecular Dynamics Simulation

David A. Kofke
Department of Chemical Engineering

SUNY Buffalo
kofke@eng.buffalo.edu

2

Review and Preview
 MD of hard disks

•  intuitive
•  collision detection and impulsive dynamics

 Monte Carlo
•  convenient sampling of ensembles
•  no dynamics
•  biasing possible to improve performance

 Molecular dynamics
•  equations of motion
•  integration schemes
•  evaluation of dynamical properties
•  extensions to other ensembles
•  focus on atomic systems for now

3

Classical Equations of Motion

 Several formulations are in use
•  Newtonian
•  Lagrangian
•  Hamiltonian

 Advantages of non-Newtonian formulations
•  more general, no need for “fictitious” forces
•  better suited for multiparticle systems
•  better handling of constraints
•  can be formulated from more basic postulates

 Assume conservative forces
Gradient of a scalar potential energy

4

Newtonian Formulation

 Cartesian spatial coordinates ri = (xi,yi,zi) are primary variables
•  for N atoms, system of N 2nd-order differential equations

 Sample application: 2D motion in central force field

•  Polar coordinates are more natural
and convenient

r	

constant angular momentum

fictitious (centrifugal) force

5

Generalized Coordinates

 Any convenient coordinates for description of particular system
•  use qi as symbol for general coordinate
•  examples

➺ diatomic {q1,…,q6} = {xcom, ycom, zcom, r12, q, f}
➺ 2-D motion in central field {q1, q2} = {r, q}

 Kinetic energy
•  general quadratic form

•  examples
➺ rotating diatomic

➺ 2-D central motion

r q

f

usually vanish

6

Lagrangian Formulation
 Independent of coordinate system
 Define the Lagrangian

• 
 Equations of motion

•  N second-order differential equations
 Central-force example

7

Hamiltonian Formulation 1. Motivation

 Appropriate for application to statistical mechanics and quantum
 mechanics

 Newtonian and Lagrangian viewpoints take the qi as the
 fundamental variables
•  N-variable configuration space
•  appears only as a convenient shorthand for dq/dt
•  working formulas are 2nd-order differential equations

 Hamiltonian formulation seeks to work with 1st-order
 differential equations
•  2N variables
•  treat the coordinate and its time derivative as independent variables
•  appropriate quantum-mechanically

8

Hamiltonian Formulation 2. Preparation

 Mathematically, Lagrangian treats q and as distinct
• 

•  identify the generalized momentum as

•  e.g.

•  Lagrangian equations of motion
 We would like a formulation in which p is an independent

 variable
•  pi is the derivative of the Lagrangian with respect to , and we’re

 looking to replace with pi
•  we need …?

9

Hamiltonian Formulation 3. Defintion

 …a Legendre transform!
 Define the Hamiltonian, H

 H equals the total energy (kinetic plus potential)

10

Hamiltonian Formulation 4. Dynamics

 Hamilton’s equations of motion
•  From Lagrangian equations, written in terms of momentum

Lagrange’s equation
 of motion	

Definition of momentum	

Differential change in L	

Legendre transform	

Hamilton’s equations of motion	

Conservation of energy	

11

Hamiltonian Formulation 5. Example

 Particle motion in central force field

 Equations no simpler, but theoretical basis is better

r	

Lagrange’s equations	

12

Phase Space (again)

 Return to the complete picture of phase space
•  full specification of microstate of the system is given by the values of

 all positions and all momenta of all atoms
➺ G = (pN,rN)

•  view positions and momenta as completely independent coordinates
➺ connection between them comes only through equation of motion

 Motion through phase space
•  helpful to think of dynamics as “simple” movement through the high

-dimensional phase space
➺ facilitate connection to quantum mechanics
➺ basis for theoretical treatments of dynamics
➺ understanding of integrators

G	

13

Integration Algorithms
 Equations of motion in cartesian coordinates

 Desirable features of an integrator
•  minimal need to compute forces (a very expensive calculation)
•  good stability for large time steps
•  good accuracy
•  conserves energy and momentum
•  time-reversible
•  area-preserving (symplectic)

pairwise additive forces	

2-dimensional space (for example)	

More on these later	

F

14

Verlet Algorithm
1. Equations

 Very simple, very good, very popular algorithm
 Consider expansion of coordinate forward and backward in time

 Add these together

 Rearrange

•  update without ever consulting velocities!

15

Verlet Algorithm 2. Flow diagram

Configuration r(t)
Previous configuration r(t-dt)

Compute forces F(t)
on all atoms using r(t)

Advance all positions according to
r(t+dt) = 2r(t)-r(t-dt)+F(t)/m dt2

Add to block sum

End of
 block?

No Block
averages

Yes

Initialization

Reset block sums

Compute block average

Compute final results

blocks per simulation

Entire Simulation

1 move per cycle
New configuration

cycles per block

Add to block sum

One MD Cycle

One force
 evaluation

 per time step	

16

Verlet Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Given current position and
 position at end of previous
 time step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

17

Verlet Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute the force at the
 current position	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

18

Verlet Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute new position from
 present and previous
 positions, and present force	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

19

Verlet Algorithm 2. Flow Diagram

r

v

F

 t-2dt t-dt t t+dt

Advance to next time step,	

repeat	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

20

Verlet Algorithm 3. Java Code

21 Verlet Algorithm
3. Relevant Methods in Java Code

//Performs one timestep increment in the Verlet algorithm
public void doStep(double tStep) {

 atomIterator.reset();
 while(atomIterator.hasNext()) { //zero forces on all atoms
 ((Agent)atomIterator.next().ia).force.E(0.0); //integratorVerlet.Agent keeps a force Vector
 }
 pairIterator.allPairs(forceSum); //sum forces on all pairs

 double t2 = tStep*tStep;
 atomIterator.reset();
 while(atomIterator.hasNext()) { //loop over all atoms, moving according to Verlet
 Atom a = atomIterator.next();
 Agent agent = (Agent)a.ia;
 Space.Vector r = a.position(); //current position of the atom
 temp.E(r); //save it
 r.TE(2.0); //2*r
 r.ME(agent.rLast); //2*r-rLast
 agent.force.TE(a.rm()*t2); // f/m dt^2
 r.PE(agent.force); //2*r - rLast + f/m dt^2
 agent.rLast.E(temp); //rLast gets present r
 }
 return;
}

public class IntegratorVerlet extends Integrator

22 Verlet Algorithm
3. Relevant Methods in Java Code

//(anonymous) class for incrementing the sum of the forces on each atom
forceSum = new AtomPair.Action() {
 private Space.Vector f = simulation().space.makeVector();
 public void action(AtomPair pair) {
 PotentialSoft potential = (PotentialSoft)simulation().getPotential(pair) //identify pot’l
 f.E(potential.force(pair)); //compute force of atom1 on atom2
 ((Agent)pair.atom1().ia).force.PE(f); //increment atom1 force
 ((Agent)pair.atom2().ia).force.ME(f); //increment atom2 force
 }
};

//Agent class for IntegratorVerlet; stores useful quantities in each Atom
public final static class Agent implements Integrator.Agent {
 public Atom atom;
 public Space.Vector force; //used to accumulate the force on the atom
 public Space.Vector rLast; //holds the position of the atom at the last step

 public Agent(Atom a) { //constructor
 atom = a;
 force = atom.parentMolecule().parentPhase().parentSimulation.space.makeVector();
 rLast = atom.parentMolecule().parentPhase().parentSimulation.space.makeVector();
 }
 }

public class IntegratorVerlet extends Integrator

23

Forces 1. Formalism
 Force is the gradient of the potential

2

1

r12

x12
y12

Force on 1,
 due to 2	

24

Forces 2. LJ Model
 Force is the gradient of the potential

2

1

r12

x12
y12

e.g., Lennard-Jones model	

25

Forces 3. Java Code

26

Forces
3. Relevant Methods from Java Code

public class PotentialLJ implements PotentialSoft

//Space.Vector used to compute and return a force
private Space.Vector force = Simulation.space.makeVector();

public Space.Vector force(AtomPair pair) {
 double r2 = pair.r2(); //squared distance between pair of atoms
 if(r2 > cutoffDiameterSquared) {force.E(0.0);} //outside cutoff; no interaction
 else {
 double s2 = sigmaSquared/r2; // (sigma/r)^2
 double s6 = s2*s2*s2; // (sigma/r)^6
 force.E(pair.dr()); // f = (x12 ex + y12 ey) (vector)
 force.TE(-48*s2*s6*(s6-0.5)/sigmaSquared);
 // f *= -48*(sigma/r)^8 * [(sigma/r)^6 - 1/2] / sigma^2
 }
 return force;
}

27

Verlet Algorithm. 4. Loose Ends

 Initialization
•  how to get position at “previous time step” when starting out?
•  simple approximation

 Obtaining the velocities
•  not evaluated during normal course of algorithm
•  needed to compute some properties, e.g.

➺ temperature
➺ diffusion constant

•  finite difference

28

Verlet Algorithm 5. Performance Issues

 Time reversible
•  forward time step

•  replace dt with -dt

•  same algorithm, with same positions and forces, moves system
 backward in time

 Numerical imprecision of adding large/small numbers

O(dt0) O(dt0)

O(dt1)

O(dt2)

O(dt1)

29

Initial Velocities
(from Lecture 3)

 Random direction
•  randomize each component independently
•  randomize direction by choosing point on spherical surface

 Magnitude consistent with desired temperature. Choices:
•  Maxwell-Boltzmann:
•  Uniform over (-1/2,+1/2), then scale so that
•  Constant at
•  Same for y, z components

 Be sure to shift so center-of-mass momentum is zero

30

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

31

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

 Mathematically equivalent to Verlet algorithm

32

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

 Mathematically equivalent to Verlet algorithm

r(t) as evaluated from
 previous time step

33

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

 Mathematically equivalent to Verlet algorithm

r(t) as evaluated from
 previous time step

34

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

 Mathematically equivalent to Verlet algorithm

r(t) as evaluated from
 previous time step

original algorithm

35

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Given current position, and
 velocity at last half-step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

36

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute current force	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

37

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute velocity at
 next half-step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

38

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute next position	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

39

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-2dt t-dt t t+dt

Advance to next time step,	

repeat	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

40

Leapfrog Algorithm. 3. Loose Ends

 Initialization
•  how to get velocity at “previous time step” when starting out?
•  simple approximation

 Obtaining the velocities
•  interpolate

41

Velocity Verlet Algorithm
 Roundoff advantage of leapfrog, but better treatment of

 velocities
 Algorithm

 Implemented in stages
•  evaluate current force
•  compute r at new time
•  add current-force term to velocity (gives v at half-time step)
•  compute new force
•  add new-force term to velocity

 Also mathematically equivalent to Verlet algorithm
(in giving values of r)

42

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Given current position,
 velocity, and force	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

43

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute new position	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

44

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute velocity at half step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

45

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute force at new position	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

46

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute velocity at full step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

47

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-2dt t-dt t t+dt

Advance to next time step,	

repeat	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

48

Other Algorithms

 Predictor-Corrector
•  not time reversible
•  easier to apply in some instances

➺ constraints
➺ rigid rotations

 Beeman
•  better treatment of velocities

 Velocity-corrected Verlet

49

Summary

 Several formulations of mechancs
•  Hamiltonian preferred

➺ independence of choice of coordinates
➺ emphasis on phase space

 Integration algorithms
•  Calculation of forces
•  Simple Verlet algorithsm

➺ Verlet
➺ Leapfrog
➺ Velocity Verlet

 Next up: Calculation of dynamical properties

