
1

CE 530 Molecular Simulation

Lecture 11
Molecular Dynamics Simulation

David A. Kofke
Department of Chemical Engineering

SUNY Buffalo
kofke@eng.buffalo.edu

2

Review and Preview
 MD of hard disks

•  intuitive
•  collision detection and impulsive dynamics

 Monte Carlo
•  convenient sampling of ensembles
•  no dynamics
•  biasing possible to improve performance

 Molecular dynamics
•  equations of motion
•  integration schemes
•  evaluation of dynamical properties
•  extensions to other ensembles
•  focus on atomic systems for now

3

Classical Equations of Motion

 Several formulations are in use
•  Newtonian
•  Lagrangian
•  Hamiltonian

 Advantages of non-Newtonian formulations
•  more general, no need for “fictitious” forces
•  better suited for multiparticle systems
•  better handling of constraints
•  can be formulated from more basic postulates

 Assume conservative forces
Gradient of a scalar potential energy

4

Newtonian Formulation

 Cartesian spatial coordinates ri = (xi,yi,zi) are primary variables
•  for N atoms, system of N 2nd-order differential equations

 Sample application: 2D motion in central force field

•  Polar coordinates are more natural
and convenient

r	

constant angular momentum

fictitious (centrifugal) force

5

Generalized Coordinates

 Any convenient coordinates for description of particular system
•  use qi as symbol for general coordinate
•  examples

➺ diatomic {q1,…,q6} = {xcom, ycom, zcom, r12, q, f}
➺ 2-D motion in central field {q1, q2} = {r, q}

 Kinetic energy
•  general quadratic form

•  examples
➺ rotating diatomic

➺ 2-D central motion

r q

f

usually vanish

6

Lagrangian Formulation
 Independent of coordinate system
 Define the Lagrangian

• 
 Equations of motion

•  N second-order differential equations
 Central-force example

7

Hamiltonian Formulation 1. Motivation

 Appropriate for application to statistical mechanics and quantum
 mechanics

 Newtonian and Lagrangian viewpoints take the qi as the
 fundamental variables
•  N-variable configuration space
•  appears only as a convenient shorthand for dq/dt
•  working formulas are 2nd-order differential equations

 Hamiltonian formulation seeks to work with 1st-order
 differential equations
•  2N variables
•  treat the coordinate and its time derivative as independent variables
•  appropriate quantum-mechanically

8

Hamiltonian Formulation 2. Preparation

 Mathematically, Lagrangian treats q and as distinct
• 

•  identify the generalized momentum as

•  e.g.

•  Lagrangian equations of motion
 We would like a formulation in which p is an independent

 variable
•  pi is the derivative of the Lagrangian with respect to , and we’re

 looking to replace with pi
•  we need …?

9

Hamiltonian Formulation 3. Defintion

 …a Legendre transform!
 Define the Hamiltonian, H

 H equals the total energy (kinetic plus potential)

10

Hamiltonian Formulation 4. Dynamics

 Hamilton’s equations of motion
•  From Lagrangian equations, written in terms of momentum

Lagrange’s equation
 of motion	

Definition of momentum	

Differential change in L	

Legendre transform	

Hamilton’s equations of motion	

Conservation of energy	

11

Hamiltonian Formulation 5. Example

 Particle motion in central force field

 Equations no simpler, but theoretical basis is better

r	

Lagrange’s equations	

12

Phase Space (again)

 Return to the complete picture of phase space
•  full specification of microstate of the system is given by the values of

 all positions and all momenta of all atoms
➺ G = (pN,rN)

•  view positions and momenta as completely independent coordinates
➺ connection between them comes only through equation of motion

 Motion through phase space
•  helpful to think of dynamics as “simple” movement through the high

-dimensional phase space
➺ facilitate connection to quantum mechanics
➺ basis for theoretical treatments of dynamics
➺ understanding of integrators

G	

13

Integration Algorithms
 Equations of motion in cartesian coordinates

 Desirable features of an integrator
•  minimal need to compute forces (a very expensive calculation)
•  good stability for large time steps
•  good accuracy
•  conserves energy and momentum
•  time-reversible
•  area-preserving (symplectic)

pairwise additive forces	

2-dimensional space (for example)	

More on these later	

F

14

Verlet Algorithm
1. Equations

 Very simple, very good, very popular algorithm
 Consider expansion of coordinate forward and backward in time

 Add these together

 Rearrange

•  update without ever consulting velocities!

15

Verlet Algorithm 2. Flow diagram

Configuration r(t)
Previous configuration r(t-dt)

Compute forces F(t)
on all atoms using r(t)

Advance all positions according to
r(t+dt) = 2r(t)-r(t-dt)+F(t)/m dt2

Add to block sum

End of
 block?

No Block
averages

Yes

Initialization

Reset block sums

Compute block average

Compute final results

blocks per simulation

Entire Simulation

1 move per cycle
New configuration

cycles per block

Add to block sum

One MD Cycle

One force
 evaluation

 per time step	

16

Verlet Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Given current position and
 position at end of previous
 time step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

17

Verlet Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute the force at the
 current position	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

18

Verlet Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute new position from
 present and previous
 positions, and present force	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

19

Verlet Algorithm 2. Flow Diagram

r

v

F

 t-2dt t-dt t t+dt

Advance to next time step,	

repeat	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

20

Verlet Algorithm 3. Java Code

21 Verlet Algorithm
3. Relevant Methods in Java Code

//Performs one timestep increment in the Verlet algorithm
public void doStep(double tStep) {

 atomIterator.reset();
 while(atomIterator.hasNext()) { //zero forces on all atoms
 ((Agent)atomIterator.next().ia).force.E(0.0); //integratorVerlet.Agent keeps a force Vector
 }
 pairIterator.allPairs(forceSum); //sum forces on all pairs

 double t2 = tStep*tStep;
 atomIterator.reset();
 while(atomIterator.hasNext()) { //loop over all atoms, moving according to Verlet
 Atom a = atomIterator.next();
 Agent agent = (Agent)a.ia;
 Space.Vector r = a.position(); //current position of the atom
 temp.E(r); //save it
 r.TE(2.0); //2*r
 r.ME(agent.rLast); //2*r-rLast
 agent.force.TE(a.rm()*t2); // f/m dt^2
 r.PE(agent.force); //2*r - rLast + f/m dt^2
 agent.rLast.E(temp); //rLast gets present r
 }
 return;
}

public class IntegratorVerlet extends Integrator

22 Verlet Algorithm
3. Relevant Methods in Java Code

//(anonymous) class for incrementing the sum of the forces on each atom
forceSum = new AtomPair.Action() {
 private Space.Vector f = simulation().space.makeVector();
 public void action(AtomPair pair) {
 PotentialSoft potential = (PotentialSoft)simulation().getPotential(pair) //identify pot’l
 f.E(potential.force(pair)); //compute force of atom1 on atom2
 ((Agent)pair.atom1().ia).force.PE(f); //increment atom1 force
 ((Agent)pair.atom2().ia).force.ME(f); //increment atom2 force
 }
};

//Agent class for IntegratorVerlet; stores useful quantities in each Atom
public final static class Agent implements Integrator.Agent {
 public Atom atom;
 public Space.Vector force; //used to accumulate the force on the atom
 public Space.Vector rLast; //holds the position of the atom at the last step

 public Agent(Atom a) { //constructor
 atom = a;
 force = atom.parentMolecule().parentPhase().parentSimulation.space.makeVector();
 rLast = atom.parentMolecule().parentPhase().parentSimulation.space.makeVector();
 }
 }

public class IntegratorVerlet extends Integrator

23

Forces 1. Formalism
 Force is the gradient of the potential

2

1

r12

x12
y12

Force on 1,
 due to 2	

24

Forces 2. LJ Model
 Force is the gradient of the potential

2

1

r12

x12
y12

e.g., Lennard-Jones model	

25

Forces 3. Java Code

26

Forces
3. Relevant Methods from Java Code

public class PotentialLJ implements PotentialSoft

//Space.Vector used to compute and return a force
private Space.Vector force = Simulation.space.makeVector();

public Space.Vector force(AtomPair pair) {
 double r2 = pair.r2(); //squared distance between pair of atoms
 if(r2 > cutoffDiameterSquared) {force.E(0.0);} //outside cutoff; no interaction
 else {
 double s2 = sigmaSquared/r2; // (sigma/r)^2
 double s6 = s2*s2*s2; // (sigma/r)^6
 force.E(pair.dr()); // f = (x12 ex + y12 ey) (vector)
 force.TE(-48*s2*s6*(s6-0.5)/sigmaSquared);
 // f *= -48*(sigma/r)^8 * [(sigma/r)^6 - 1/2] / sigma^2
 }
 return force;
}

27

Verlet Algorithm. 4. Loose Ends

 Initialization
•  how to get position at “previous time step” when starting out?
•  simple approximation

 Obtaining the velocities
•  not evaluated during normal course of algorithm
•  needed to compute some properties, e.g.

➺ temperature
➺ diffusion constant

•  finite difference

28

Verlet Algorithm 5. Performance Issues

 Time reversible
•  forward time step

•  replace dt with -dt

•  same algorithm, with same positions and forces, moves system
 backward in time

 Numerical imprecision of adding large/small numbers

O(dt0) O(dt0)

O(dt1)

O(dt2)

O(dt1)

29

Initial Velocities
(from Lecture 3)

 Random direction
•  randomize each component independently
•  randomize direction by choosing point on spherical surface

 Magnitude consistent with desired temperature. Choices:
•  Maxwell-Boltzmann:
•  Uniform over (-1/2,+1/2), then scale so that
•  Constant at
•  Same for y, z components

 Be sure to shift so center-of-mass momentum is zero

30

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

31

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

 Mathematically equivalent to Verlet algorithm

32

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

 Mathematically equivalent to Verlet algorithm

r(t) as evaluated from
 previous time step

33

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

 Mathematically equivalent to Verlet algorithm

r(t) as evaluated from
 previous time step

34

Leapfrog Algorithm

 Eliminates addition of small numbers O(dt2) to differences in
 large ones O(dt0)

 Algorithm

 Mathematically equivalent to Verlet algorithm

r(t) as evaluated from
 previous time step

original algorithm

35

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Given current position, and
 velocity at last half-step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

36

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute current force	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

37

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute velocity at
 next half-step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

38

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute next position	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

39

Leapfrog Algorithm 2. Flow Diagram

r

v

F

 t-2dt t-dt t t+dt

Advance to next time step,	

repeat	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

40

Leapfrog Algorithm. 3. Loose Ends

 Initialization
•  how to get velocity at “previous time step” when starting out?
•  simple approximation

 Obtaining the velocities
•  interpolate

41

Velocity Verlet Algorithm
 Roundoff advantage of leapfrog, but better treatment of

 velocities
 Algorithm

 Implemented in stages
•  evaluate current force
•  compute r at new time
•  add current-force term to velocity (gives v at half-time step)
•  compute new force
•  add new-force term to velocity

 Also mathematically equivalent to Verlet algorithm
(in giving values of r)

42

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Given current position,
 velocity, and force	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

43

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute new position	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

44

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute velocity at half step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

45

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute force at new position	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

46

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-dt t t+dt

Compute velocity at full step	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

47

Velocity Verlet Algorithm
2. Flow Diagram

r

v

F

 t-2dt t-dt t t+dt

Advance to next time step,	

repeat	

Schematic from Allen & Tildesley, Computer Simulation of Liquids

48

Other Algorithms

 Predictor-Corrector
•  not time reversible
•  easier to apply in some instances

➺ constraints
➺ rigid rotations

 Beeman
•  better treatment of velocities

 Velocity-corrected Verlet

49

Summary

 Several formulations of mechancs
•  Hamiltonian preferred

➺ independence of choice of coordinates
➺ emphasis on phase space

 Integration algorithms
•  Calculation of forces
•  Simple Verlet algorithsm

➺ Verlet
➺ Leapfrog
➺ Velocity Verlet

 Next up: Calculation of dynamical properties

