CE 530 Molecular Simulation

Lecture 11
Molecular Dynamics Simulation

David A. Kofke
Department of Chemical Engineering
SUNY Buffalo
kofke@eng.buffalo.edu

Review and Preview

 MD of hard disks}- intuitive
- collision detection and impulsive dynamics

O Monte Carlo

- convenient sampling of ensembles
- no dynamics
- biasing possible to improve performance

○ Molecular dynamics

- equations of motion
- integration schemes
- evaluation of dynamical properties
- extensions to other ensembles
- focus on atomic systems for now

Classical Equations of Motion

O Several formulations are in use

- Newtonian
- Lagrangian
- Hamiltonian

O Advantages of non-Newtonian formulations

- more general, no need for "fictitious" forces
- better suited for multiparticle systems
- better handling of constraints
- can be formulated from more basic postulates

O Assume conservative forces

$$
\overrightarrow{\mathbf{F}}=-\vec{\nabla} U \quad \text { Gradient of a scalar potential energy }
$$

Newtonian Formulation

○ Cartesian spatial coordinates $\mathbf{r}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$ are primary variables

- for N atoms, system of $N 2 n d$-order differential equations

$$
m \frac{d^{2} \mathbf{r}_{i}}{d t^{2}} \equiv m \ddot{\mathbf{r}}_{i}=\mathbf{F}_{i}
$$

O Sample application: 2D motion in central force field

$$
\begin{aligned}
& m \ddot{x}=\mathbf{F} \cdot \hat{\mathbf{e}}_{x}=-f(r) \hat{\mathbf{r}} \cdot \hat{\mathbf{e}}_{x}=-x f\left(\sqrt{x^{2}+y^{2}}\right) \\
& m \ddot{y}=\mathbf{F} \cdot \hat{\mathbf{e}}_{y}=-f(r) \hat{\mathbf{r}} \cdot \hat{\mathbf{e}}_{y}=-y f\left(\sqrt{x^{2}+y^{2}}\right)
\end{aligned}
$$

- Polar coordinates are more natural and convenient

$$
m r^{2} \dot{\theta}=\ell \text { constant angular momentum }
$$

$$
m \ddot{r}=-f(r)+\frac{\ell^{2}}{m r^{3}} \text { fictitious (centrifugal) force }
$$

Generalized Coordinates

O Any convenient coordinates for description of particular system

- use q_{i} as symbol for general coordinate
- examples
\rightarrow diatomic $\left\{\mathrm{q}_{1}, \ldots, \mathrm{q}_{6}\right\}=\left\{\mathrm{x}_{\text {com }}, \mathrm{y}_{\text {com }}, \mathrm{z}_{\text {com }}, \mathrm{r}_{12}, \mathrm{q}, \mathrm{f}\right\}$
$\rightarrow 2-\mathrm{D}$ motion in central field $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}=\{\mathrm{r}, \mathrm{q}\}$
○ Kinetic energy
- general quadratic form

$$
K=\underbrace{M_{0}(\mathbf{q})+\sum M_{j}(\mathbf{q}) \dot{q}_{j}}+\frac{1}{2} \sum \sum M_{j k}(\mathbf{q}) \dot{q}_{j} \dot{q}_{k}
$$

- examples
usually vanish
\rightarrow rotating diatomic $\quad K=\frac{1}{2} m\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}+\dot{q}_{3}^{2}\right)+\frac{1}{8} m\left[\dot{r}^{2}+r^{2} \dot{\theta}^{2}+(r \sin \theta)^{2} \dot{\phi}^{2}\right]$
$\rightarrow 2$-D central motion $\quad K=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)$

Lagrangian Formulation

O Independent of coordinate system
O Define the Lagrangian

- $L(\mathbf{q}, \dot{\mathbf{q}}) \equiv K(\mathbf{q}, \dot{\mathbf{q}})-U(\mathbf{q})$

O Equations of motion

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=0 \quad j=1 \ldots N
$$

- N second-order differential equations

O Central-force example

$$
\begin{gathered}
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-U(r) \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)=\frac{\partial L}{\partial r} \Rightarrow \frac{d \ddot{r}=m r \dot{\theta}^{2}-f(r)}{\stackrel{\rightharpoonup}{\mathrm{F}}_{r}=-\vec{V}_{r} U=-f(r)} \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{\partial L}{\partial \theta} \Rightarrow \frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0
\end{gathered}
$$

Hamiltonian Formulation 1. Motivation

O Appropriate for application to statistical mechanics and quantum mechanics
O Newtonian and Lagrangian viewpoints take the q_{i} as the fundamental variables

- N-variable configuration space
- \dot{q}_{i} appears only as a convenient shorthand for $d q / d t$
- working formulas are 2nd-order differential equations

O Hamiltonian formulation seeks to work with 1st-order differential equations

- $2 N$ variables
- treat the coordinate and its time derivative as independent variables
- appropriate quantum-mechanically

Hamiltonian Formulation 2. Preparation

O Mathematically, Lagrangian treats q and \dot{q} as distinct

- $L\left(q_{j}, \dot{q}_{j}, t\right)$
- identify the generalized momentum as $p_{j}=\frac{\partial L}{\partial \dot{q}_{j}}$
- e.g. if $L=K-U=\frac{1}{2} m \dot{q}^{2}-U(q) ; p=\partial L / \partial \dot{q}=m \dot{q}$
- Lagrangian equations of motion $\frac{d p_{j}}{d t}=\frac{\partial L}{\partial q_{j}}$
\bigcirc We would like a formulation in which p is an independent variable
- p_{i} is the derivative of the Lagrangian with respect to \dot{q}_{i}, and we're looking to replace \dot{q}_{i} with p_{i}
- we need ...?

Hamiltonian Formulation 3. Defintion

O ...a Legendre transform!
O Define the Hamiltonian, H

$$
\begin{aligned}
H(\mathbf{q}, \mathbf{p}) & =-\left[L(\mathbf{q}, \dot{\mathbf{q}})-\sum p_{j} \dot{q}_{j}\right] \\
& =-K(\mathbf{q}, \dot{\mathbf{q}})+U(\mathbf{q})+\sum \frac{\partial K}{\partial \dot{q}_{j}} \dot{q}_{j} \\
& =-\sum a_{j} \dot{q}_{j}^{2}+U(\mathbf{q})+\sum\left(2 a_{j} \dot{q}_{j}\right) \dot{q}_{j} \\
& =+\sum a_{j} \dot{q}_{j}^{2}+U(\mathbf{q}) \\
& =K+U
\end{aligned}
$$

O H equals the total energy (kinetic plus potential)

Hamiltonian Formulation 4. Dynamics

O Hamilton's equations of motion

- From Lagrangian equations, written in terms of momentum

Differential change in L

$$
\begin{aligned}
d L & =\frac{\partial L}{\partial q} d q+\frac{\partial L}{\partial \dot{q}} d \dot{q} \\
& =\dot{p} d q+p d q
\end{aligned}
$$

Legendre transform

$$
\begin{aligned}
H & =-(L-p \dot{q}) \\
d H & =-(\dot{p} d q-\dot{q} d p) \\
d H & =-\dot{p} d q+\dot{q} d p
\end{aligned}\left\{\begin{array}{l}
\dot{q}=+\frac{\partial H}{\partial p} \\
\dot{p}=-\frac{\partial H}{\partial q}
\end{array} \quad\right. \text { Hamilton's equations of motion }
$$

$$
\text { Conservation of energy } \frac{d H}{d t}=-\dot{p} \frac{d q}{d t}+\dot{q} \frac{d p}{d t}=-\dot{p} \dot{q}+\dot{q} \dot{p}=0
$$

Hamiltonian Formulation 5. Example

O Particle motion in central force field

$$
\begin{gathered}
H=K+U \\
=\frac{p_{r}^{2}}{2 m}+\frac{p_{\theta}^{2}}{2 m r^{2}}+U(r) \\
\dot{q}=+\frac{\partial H}{\partial p} \begin{array}{cl}
\text { (1) } \frac{d r}{d t}=\frac{p_{r}}{m} & \text { (2) } \frac{d \theta}{d t}=\frac{p_{\theta}}{m r^{2}} \\
\dot{p}=-\frac{\partial H}{\partial q} \quad \begin{array}{ll}
\text { (3) } \frac{d p_{r}}{d t}=\frac{p_{\theta}^{2}}{m r^{3}}-f(r) & \text { (4) } \frac{d p_{\theta}}{d t}=0
\end{array} \\
\stackrel{\rightharpoonup}{\mathrm{~F}}_{r}=-\vec{\nabla}_{r} U=-f(r)
\end{array}
\end{gathered}
$$

Lagrange's equations

$$
m \ddot{r}=m r \dot{\theta}^{2}-f(r)
$$

$$
\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0
$$

O Equations no simpler, but theoretical basis is better

Phase Space (again)

O Return to the complete picture of phase space

- full specification of microstate of the system is given by the values of all positions and all momenta of all atoms
$\rightarrow \mathrm{G}=\left(\mathrm{p}^{\mathrm{N}}, \mathrm{r}^{\mathrm{N}}\right)$
- view positions and momenta as completely independent coordinates
\rightarrow connection between them comes only through equation of motion
O Motion through phase space
- helpful to think of dynamics as "simple" movement through the high -dimensional phase space
\rightarrow facilitate connection to quantum mechanics
\rightarrow basis for theoretical treatments of dynamics
\rightarrow understanding of integrators

Integration Algorithms

O Equations of motion in cartesian coordinates

$$
\begin{aligned}
& \begin{array}{|c}
\begin{array}{|c}
\frac{d \mathbf{r}_{j}}{d t}=\frac{\mathbf{p}_{j}}{m} \\
\frac{d \mathbf{p}_{j}}{d t}=\mathbf{F}_{j}
\end{array} \\
\left.\begin{array}{l}
\mathbf{r}=\left(r_{x}, r_{y}\right) \\
\mathbf{p}=\left(p_{x}, p_{y}\right)
\end{array}\right\} \text { 2-dimensional space (for example) } \\
\mathbf{F}_{j}=\sum_{\substack{i=1 \\
i \neq j}}^{N} \mathbf{F}_{i j} \text { pairwise additive forces }
\end{array} \\
& \text { Desirable features of an integrator }
\end{aligned}
$$

- minimal need to compute forces (a very expensive calculation)
- good stability for large time steps
- good accuracy
- conserves energy and momentum
- time-reversible
- area-preserving (symplectic)

Verlet Algorithm 1. Equations

O Very simple, very good, very popular algorithm
O Consider expansion of coordinate forward and backward in time

$$
\begin{aligned}
& \mathbf{r}(t+\delta t)=\mathbf{r}(t)+\frac{1}{m} \mathbf{p}(t) \delta t+\frac{1}{2 m} \mathbf{F}(t) \delta t^{2}+\frac{1}{3!} \dddot{\mathbf{r}}(t) \delta t^{3}+O\left(\delta t^{4}\right) \\
& \mathbf{r}(t-\delta t)=\mathbf{r}(t)-\frac{1}{m} \mathbf{p}(t) \delta t+\frac{1}{2 m} \mathbf{F}(t) \delta t^{2}-\frac{1}{3!} \dddot{\mathbf{r}}(t) \delta t^{3}+O\left(\delta t^{4}\right)
\end{aligned}
$$

\bigcirc Add these together

$$
\mathbf{r}(t+\delta t)+\mathbf{r}(t-\delta t)=2 \mathbf{r}(t)+\frac{1}{m} \mathbf{F}(t) \delta t^{2}+O\left(\delta t^{4}\right)
$$Rearrange

$$
\mathbf{r}(t+\delta t)=2 \mathbf{r}(t)-\mathbf{r}(t-\delta t)+\frac{1}{m} \mathbf{F}(t) \delta t^{2}+O\left(\delta t^{4}\right)
$$

- update without ever consulting velocities!

Verlet Algorithm 2. Flow diagram

Verlet Algorithm 2. Flow Diagram

Given current position and position at end of previous time step

Verlet Algorithm 2. Flow Diagram

Compute the force at the current position

Verlet Algorithm 2. Flow Diagram

Compute new position from present and previous positions, and present force

Verlet Algorithm 2. Flow Diagram

Advance to next time step, repeat

Verlet Algorithm 3. Java Code

User's Perspective on the Molecular Simulation API

Verlet Algorithm
 3. Relevant Methods in Java Code

public class IntegratorVerlet extends Integrator

//Performs one timestep increment in the Verlet algorithm public void doStep(double tStep) \{
atomIterator.reset();
while(atomIterator.hasNext()) \{ //zero forces on all atoms
((Agent) atomIterator. next().ia).force.E(0.0); //integratorVerlet.Agent keeps a force Vector
\}
pairIterator.allPairs(forceSum); //sum forces on all pairs
double t2 $=$ tStep*tStep;
atomIterator.reset();
while(atomIterator.hasNext()) \{ //loop over all atoms, moving according to Verlet
Atom a = atomIterator.next();
Agent agent $=$ (Agent) a.ia;
Space.Vector r = a.position(); //current position of the atom
temp.E(r); //save it
r.TE(2.0); //2*r
r.ME (agent.rLast) ; //2*r-rLast
agent.force.TE(a.rm()*t2); $/ / \mathrm{f} / \mathrm{m} \mathrm{dt}$ ^2
r.PE (agent.force) ;
//2*r - rLast + f/m dt^2
agent.rLast.E(temp);
//rLast gets present r
\}
return;

Verlet Algorithm
 3. Relevant Methods in Java Code

public class IntegratorVerlet extends Integrator

```
//(anonymous) class for incrementing the sum of the forces on each atom
forceSum = new AtomPair.Action() {
    private Space.Vector f = simulation().space.makeVector();
    public void action(AtomPair pair) {
    PotentialSoft potential = (PotentialSoft)simulation().getPotential(pair) //identify pot'l
    f.E(potential.force(pair)); //compute force of atom1 on atom2
    ((Agent) pair.atom1().ia).force.PE(f); //increment atom1 force
    ((Agent)pair.atom2().ia).force.ME(f); //increment atom2 force
    }
};
//Agent class for IntegratorVerlet; stores useful quantities in each Atom
public final static class Agent implements Integrator.Agent {
    public Atom atom;
        public Space.Vector force; //used to accumulate the force on the atom
        public Space.Vector rLast; //holds the position of the atom at the last step
        public Agent(Atom a) { //constructor
            atom = a;
            force = atom.parentMolecule().parentPhase().parentSimulation.space.makeVector();
            rLast = atom.parentMolecule().parentPhase().parentSimulation.space.makeVector();
        }
    }
```


Forces 1. Formalism

$$
\begin{aligned}
\mathbf{F}_{2 \rightarrow 1} & =-\nabla u\left(r_{12}\right) \\
\text { Force on } 1, & =-\frac{\partial u\left(r_{12}\right)}{\partial x_{1}} \mathbf{e}_{x}-\frac{\partial u\left(r_{12}\right)}{\partial y_{1}} \mathbf{e}_{y} \\
& =-\frac{d u\left(r_{12}\right)}{d r_{12}}\left[\frac{\partial r_{12}}{\partial x_{1}} \mathbf{e}_{x}+\frac{\partial r_{12}}{\partial y_{1}} \mathbf{e}_{y}\right] \\
& =-\frac{f\left(r_{12}\right)}{r_{12}}\left[x_{12} \mathbf{e}_{x}+y_{12} \mathbf{e}_{y}\right]
\end{aligned}
$$

$$
\mathbf{F}_{2 \rightarrow 1}=-\mathbf{F}_{1 \rightarrow 2}
$$

Forces 2. LJ Model

O Force is the gradient of the potential

$$
\mathbf{F}_{2 \rightarrow 1}=-\frac{f\left(r_{12}\right)}{r_{12}}\left[x_{12} \mathbf{e}_{x}+y_{12} \mathbf{e}_{y}\right]
$$

e.g., Lennard-Jones model

$$
\begin{aligned}
& u(r)=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] \\
& f(r)=-\frac{d u}{d r}
\end{aligned}
$$

$$
=+\frac{48 \varepsilon}{\sigma}\left[\left(\frac{\sigma}{r}\right)^{13}-\frac{1}{2}\left(\frac{\sigma}{r}\right)^{7}\right]
$$

$\mathbf{F}_{2 \rightarrow 1}=-\frac{48 \varepsilon}{\sigma^{2}}\left[\left(\frac{\sigma}{r_{12}}\right)^{14}-\frac{1}{2}\left(\frac{\sigma}{r_{12}}\right)^{8}\right]\left[x_{12} \mathbf{e}_{x}+y_{12} \mathbf{e}_{y}\right]$

$$
r_{12}=\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]^{1 / 2}
$$

Forces 3. Java Code

User's Perspective on the Molecular Simulation API

Forces

3. Relevant Methods from Java Code

public class PotentialLJ implements PotentialSoft

//Space.Vector used to compute and return a force
private Space.Vector force = Simulation.space.makeVector();
public Space. Vector force (AtomPair pair) \{
double r2 $=$ pair.r2 () ; //squared distance between pair of atoms if(r2 > cutoffDiameterSquared) \{force.E(0.0);\} //outside cutoff; no interaction else \{
double s2 = sigmaSquared/r2; // (sigma/r)^2
double s6 = s2*s2*s2; // (sigma/r)^6
force.E(pair.dr()); $\quad / / \mathrm{f}=(\mathrm{x} 12 \mathrm{ex}+\mathrm{y} 12 \mathrm{ey}) \quad$ (vector)
force.TE (-48*s2*s6* (s6-0.5) /sigmaSquared) ;
// f *= -48*(sigma/r)^8 * [(sigma/r)^6 - 1/2] / sigma^2
\}
return force;
\}

Verlet Algorithm. 4. Loose Ends

Initialization

- how to get position at "previous time step" when starting out?
- simple approximation

$$
\mathbf{r}\left(t_{0}-\delta t\right)=\mathbf{r}\left(t_{0}\right)-\mathbf{v}\left(t_{0}\right) \delta t
$$

\bigcirc Obtaining the velocities

- not evaluated during normal course of algorithm
- needed to compute some properties, e.g.
\rightarrow temperature
\rightarrow diffusion constant
- finite difference

$$
\mathbf{v}(t)=\frac{1}{2 \delta t}[\mathbf{r}(t+\delta t)-\mathbf{r}(t-\delta t)]+O\left(\delta t^{2}\right)
$$

Verlet Algorithm 5. Performance Issues

Time reversible- forward time step

$$
\mathbf{r}(t+\delta t)=2 \mathbf{r}(t)-\mathbf{r}(t-\delta t)+\frac{1}{m} \mathbf{F}(t) \delta t^{2}
$$

- replace dt with -dt

$$
\begin{aligned}
& \mathbf{r}(t+(-\delta t))=2 \mathbf{r}(t)-\mathbf{r}(t-(-\delta t))+\frac{1}{m} \mathbf{F}(t)(-\delta t)^{2} \\
& \mathbf{r}(t-\delta t)=2 \mathbf{r}(t)-\mathbf{r}(t+\delta t)+\frac{1}{m} \mathbf{F}(t) \delta t^{2}
\end{aligned}
$$

- same algorithm, with same positions and forces, moves system backward in time
O Numerical imprecision of adding large/small numbers

Initial Velocities

(from Lecture 3)

O Random direction

- randomize each component independently
- randomize direction by choosing point on spherical surface

O Magnitude consistent with desired temperature. Choices:

- Maxwell-Boltzmann: $\operatorname{prob}\left(v_{x}\right) \propto \exp \left(-\frac{1}{2} m v_{x}^{2} / k T\right)$
- Uniform over (-1/2,+1/2), then scale so that $\frac{1}{N} \sum v_{i, x}^{2}=k T / m$
- Constant at $v_{x}= \pm \sqrt{k T / m}$
- Same for y, z components

O Be sure to shift so center-of-mass momentum is zero

$$
\begin{aligned}
& P_{x} \equiv \frac{1}{N} \sum p_{i, x} \\
& p_{i, x} \rightarrow p_{i, x}-P_{x}
\end{aligned}
$$

Leapfrog Algorithm

O Eliminates addition of small numbers $\mathrm{O}\left(\mathrm{dt}^{2}\right)$ to differences in large ones $\mathrm{O}\left(\mathrm{dt}^{0}\right)$
O Algorithm

$$
\begin{aligned}
\mathbf{r}(t+\delta t) & =\mathbf{r}(t)+\mathbf{v}\left(t+\frac{1}{2} \delta t\right) \delta t \\
\mathbf{v}\left(t+\frac{1}{2} \delta t\right) & =\mathbf{v}\left(t-\frac{1}{2} \delta t\right)+\frac{1}{m} \mathbf{F}(t) \delta t
\end{aligned}
$$

Leapfrog Algorithm

O Eliminates addition of small numbers $\mathrm{O}\left(\mathrm{dt}^{2}\right)$ to differences in large ones $\mathrm{O}\left(\mathrm{dt}^{0}\right)$
O Algorithm

$$
\begin{aligned}
\mathbf{r}(t+\delta t) & =\mathbf{r}(t)+\mathbf{v}\left(t+\frac{1}{2} \delta t\right) \delta t \\
\mathbf{v}\left(t+\frac{1}{2} \delta t\right) & =\mathbf{v}\left(t-\frac{1}{2} \delta t\right)+\frac{1}{m} \mathbf{F}(t) \delta t
\end{aligned}
$$

O Mathematically equivalent to Verlet algorithm

$$
\mathbf{r}(t+\delta t)=\mathbf{r}(t)+\left[\mathbf{v}\left(t-\frac{1}{2} \delta t\right)+\frac{1}{m} \mathbf{F}(t) \delta t\right] \delta t
$$

Leapfrog Algorithm

O Eliminates addition of small numbers $\mathrm{O}\left(\mathrm{dt}^{2}\right)$ to differences in large ones $\mathrm{O}\left(\mathrm{dt}^{0}\right)$
O Algorithm

$$
\begin{aligned}
\mathbf{r}(t+\delta t) & =\mathbf{r}(t)+\mathbf{v}\left(t+\frac{1}{2} \delta t\right) \delta t \\
\mathbf{v}\left(t+\frac{1}{2} \delta t\right) & =\mathbf{v}\left(t-\frac{1}{2} \delta t\right)+\frac{1}{m} \mathbf{F}(t) \delta t
\end{aligned}
$$

O Mathematically equivalent to Verlet algorithm

$$
\mathbf{r}(t+\delta t)=\mathbf{r}(t)+\left[\mathbf{v}\left(t-\frac{1}{2} \delta t\right)+\frac{1}{m} \mathbf{F}(t) \delta t\right] \delta t
$$

$\mathbf{r}(\mathrm{t})$ as evaluated from

$$
\overparen{\mathbf{r}(t)=\mathbf{r}(t-\delta t)}+\mathbf{v}\left(t-\frac{1}{2} \delta t\right) \delta t
$$

Leapfrog Algorithm

O Eliminates addition of small numbers $\mathrm{O}\left(\mathrm{dt}^{2}\right)$ to differences in large ones $\mathrm{O}\left(\mathrm{dt}^{0}\right)$
O Algorithm

$$
\begin{aligned}
\mathbf{r}(t+\delta t) & =\mathbf{r}(t)+\mathbf{v}\left(t+\frac{1}{2} \delta t\right) \delta t \\
\mathbf{v}\left(t+\frac{1}{2} \delta t\right) & =\mathbf{v}\left(t-\frac{1}{2} \delta t\right)+\frac{1}{m} \mathbf{F}(t) \delta t
\end{aligned}
$$

O Mathematically equivalent to Verlet algorithm

$$
\mathbf{r}(t+\delta t)=\mathbf{r}(t)+\left[\mathbf{v}\left(t-\frac{1}{2} \delta t\right)+\frac{1}{m} \mathbf{F}(t) \delta t\right] \delta t
$$

$$
\uparrow
$$

$\mathbf{r}(\mathrm{t})$ as evaluated from previous time step

$$
\overparen{\mathbf{r}(t)=\mathbf{r}(t-\delta t)+\mathbf{v}\left(t-\frac{1}{2} \delta t\right) \delta t, ~(t)}
$$

$$
\mathbf{r}(t+\delta t)=\mathbf{r}(t)+\left[(\mathbf{r}(t)-\mathbf{r}(t-\delta t))+\frac{1}{m} \mathbf{F}(t) \delta t^{2}\right]
$$

Leapfrog Algorithm

O Eliminates addition of small numbers $\mathrm{O}\left(\mathrm{dt}^{2}\right)$ to differences in large ones $\mathrm{O}\left(\mathrm{dt}^{0}\right)$
O Algorithm

$$
\begin{aligned}
\mathbf{r}(t+\delta t) & =\mathbf{r}(t)+\mathbf{v}\left(t+\frac{1}{2} \delta t\right) \delta t \\
\mathbf{v}\left(t+\frac{1}{2} \delta t\right) & =\mathbf{v}\left(t-\frac{1}{2} \delta t\right)+\frac{1}{m} \mathbf{F}(t) \delta t
\end{aligned}
$$

O Mathematically equivalent to Verlet algorithm

$$
\mathbf{r}(t+\delta t)=\mathbf{r}(t)+\left[\mathbf{v}\left(t-\frac{1}{2} \delta t\right)+\frac{1}{m} \mathbf{F}(t) \delta t\right] \delta t
$$

$$
\uparrow
$$

$\mathbf{r}(\mathrm{t})$ as evaluated from previous time step

$$
\begin{aligned}
& \mathbf{r}(t)=\mathbf{r}(t-\delta t)+\mathbf{v}\left(t-\frac{1}{2} \delta t\right) \delta t \\
& \mathbf{r}(t+\delta t)=\mathbf{r}(t)+\left[(\mathbf{r}(t)-\mathbf{r}(t-\delta t))+\frac{1}{m} \mathbf{F}(t) \delta t^{2}\right] \\
& \mathbf{r}(t+\delta t)=2 \mathbf{r}(t)-\mathbf{r}(t-\delta t)+\frac{1}{m} \mathbf{F}(t) \delta t^{2} \quad \text { original algorithm }
\end{aligned}
$$

Leapfrog Algorithm 2. Flow Diagram

Given current position, and velocity at last half-step

Leapfrog Algorithm 2. Flow Diagram

Compute current force

Leapfrog Algorithm 2. Flow Diagram

Compute velocity at next half-step

Leapfrog Algorithm 2. Flow Diagram

Compute next position

Leapfrog Algorithm 2. Flow Diagram

Advance to next time step, repeat

Leapfrog Algorithm. 3. Loose Ends

Initialization

- how to get velocity at "previous time step" when starting out?
- simple approximation

$$
\mathbf{v}\left(t_{0}-\delta t\right)=\mathbf{v}\left(t_{0}\right)-\frac{1}{m} \mathbf{F}\left(t_{0}\right) \frac{1}{2} \delta t
$$

O Obtaining the velocities

- interpolate

$$
\mathbf{v}(t)=\frac{1}{2}\left[\mathbf{v}\left(t+\frac{1}{2} \delta t\right)+\mathbf{v}\left(t-\frac{1}{2} \delta t\right)\right]
$$

Velocity Verlet Algorithm

Roundoff advantage of leapfrog, but better treatment of velocitiesO Algorithm

$$
\begin{aligned}
& \mathbf{r}(t+\delta t)=\mathbf{r}(t)+\mathbf{v}(t) \delta t+\frac{1}{2 m} \mathbf{F}(t) \delta t^{2} \\
& \mathbf{v}(t+\delta t)=\mathbf{v}(t)+\frac{1}{2 m}[\mathbf{F}(t)+\mathbf{F}(t+\delta t)] \delta t
\end{aligned}
$$

O Implemented in stages

- evaluate current force
- compute \mathbf{r} at new time
- add current-force term to velocity (gives \mathbf{v} at half-time step)
- compute new force
- add new-force term to velocity

○ Also mathematically equivalent to Verlet algorithm (in giving values of \mathbf{r})

Velocity Verlet Algorithm 2. Flow Diagram

Given current position, velocity, and force

Velocity Verlet Algorithm 2. Flow Diagram

Compute new position

Velocity Verlet Algorithm 2. Flow Diagram

Compute velocity at half step

Velocity Verlet Algorithm 2. Flow Diagram

Compute force at new position

Velocity Verlet Algorithm 2. Flow Diagram

Compute velocity at full step

Velocity Verlet Algorithm 2. Flow Diagram

Advance to next time step, repeat

Other Algorithms

Predictor-Corrector- not time reversible
- easier to apply in some instances
\rightarrow constraints
\rightarrow rigid rotationsBeeman
- better treatment of velocities

O Velocity-corrected Verlet

Summary

O Several formulations of mechancs

- Hamiltonian preferred
\rightarrow independence of choice of coordinates
\rightarrow emphasis on phase space
O Integration algorithms
- Calculation of forces
- Simple Verlet algorithsm
\rightarrow Verlet
\rightarrow Leapfrog
\rightarrow Velocity Verlet
O Next up: Calculation of dynamical properties

