Physics 140B: Homework 2 Solutions

1. a) By equation (11.28) of the text, the Maxwell velocity distribution is

$$
N(v) d v=N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-\left(\frac{1}{2} m v^{2}\right) / k T} \cdot 4 \pi v^{2} d v
$$

Using $\varepsilon=\frac{1}{2} m v^{2}$ we can rephrase this in terms of the energy.

$$
\begin{aligned}
N(\varepsilon) d \varepsilon & =N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-\varepsilon / k T} 4 \pi \underbrace{\left(\frac{2 \varepsilon}{m}\right)}_{v^{2}} \cdot \underbrace{\left(\frac{2}{m}\right)^{1 / 2} \frac{1}{2} \varepsilon^{-1 / 2} d \varepsilon}_{d v} \\
& =N \frac{2}{\sqrt{\pi}(k T)^{3 / 2}} e^{-\varepsilon / k T} \varepsilon^{1 / 2} d \varepsilon
\end{aligned}
$$

Now, we use $N=N_{A}, T=273.15 K, \varepsilon=\bar{\varepsilon}=\frac{3}{2} k T$, and $d \varepsilon=10^{-22} J$ we get

$$
N(\varepsilon) d \varepsilon=4.9 \times 10^{24}
$$

b) Using equation (12.25) the number of "single-particle energy states" in a small interval is given by

$$
g(\varepsilon) d \varepsilon=\frac{4 \sqrt{2} \pi V}{h^{3}} m^{3 / 2} \varepsilon^{1 / 2} d \varepsilon
$$

Making the same substitutions as above we get

$$
g(\varepsilon) d \varepsilon=5.6 \times 10^{30}
$$

c) Using the above expressions we can compute the ratio

$$
\frac{N(\varepsilon) d \varepsilon}{g(\varepsilon) d \varepsilon}=\underbrace{\frac{N h^{3}}{V(2 \pi m k T)^{3 / 2}}}_{\text {Note that this is nothing but } e^{\beta \mu}} \underbrace{e^{-3 / 2}}_{\text {And this is } e^{-\beta \varepsilon}}=8.8 \times 10^{-7}
$$

Also, note that $\frac{N(\varepsilon)}{g(\varepsilon)} \ll 1$, which justifies the use of Maxwell-Boltzmann statistics!
2. As shown in class the expectation value of the number of photons in a radiation cavity is ${ }^{1}$

$$
\bar{N}=2.404 \cdot 8 \pi V\left(\frac{k T}{h c}\right)^{3}
$$

Thus, plugging in the average temperature of the CMB, $T=2.7 K$ along with the constants we get

$$
\bar{N}=1.67 \times 10^{87}
$$

3. Given ${ }^{2}$

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

In the context of blackbody radiation we may write

$$
U=V \cdot u(T) \quad, \quad P=\frac{1}{3} u(T)
$$

and plug into the above relation to get

$$
u=T \cdot \frac{1}{3} \frac{d u}{d T}-\frac{1}{3} u \Rightarrow T \frac{d u}{d T}=4 u
$$

which is the desired differential equation for $u(T)$, (note that it is key that u is only a function of temperature so we can make the partial derivative a total derivative). We can now solve for the explicit T dependence

$$
\frac{d u}{u}=4 \frac{d T}{T} \Rightarrow \ln u=4 \ln T+K \Rightarrow u=c T^{4}
$$

[^0]4. Start from equation (18.44)
$$
U=A T^{5 / 2}, \quad \text { where } A=\underbrace{0.77 N k T_{B}^{-3 / 2}}_{\text {a function of } \mathrm{N} \& \mathrm{~V}}
$$

Then,

$$
\begin{aligned}
C_{v} & =\left(\frac{\partial U}{\partial T}\right)_{N, V}=\frac{5}{2} A T^{3 / 2}=\frac{5}{2} \frac{U}{T} \\
S & =\int_{0}^{T} \frac{C_{v} d T}{T}=\int_{0}^{T} \frac{5}{2} A T^{1 / 2} d T=\frac{5}{2} A\left(\frac{2}{3} T^{3 / 2}\right)=\frac{5}{3} A T^{3 / 2}=\frac{5}{3} \frac{U}{T} \\
F & =U-T S=A T^{5 / 2}-\frac{5}{3} A T^{5 / 2}=-\frac{2}{3} A T^{5 / 2}=-\frac{2}{3} U \\
P V & =G-F=N \mu-F=0-\left(-\frac{2}{3} U\right)=\frac{2}{3} U \Rightarrow P=\frac{2}{3} \frac{U}{V}
\end{aligned}
$$

5. The average number of particles in a given energy state for a Bose-Einstein gas is given by

$$
\bar{N}_{\varepsilon}=\frac{1}{e^{(\varepsilon-\mu) / k T}-1} \quad\left(\varepsilon=A p^{s}\right)
$$

In the region of Bose-Einstein condensation, μ is essentially zero ${ }^{3}$ Thus,

$$
N_{e x c}=\int_{0}^{\infty} \bar{N}_{\varepsilon} g(\varepsilon) d \varepsilon
$$

where we can derive the density of states $g(\varepsilon)$ from the "phase-space" expression:

$$
\frac{V \cdot 4 \pi p^{2} d p}{h^{3}}=\frac{4 \pi V}{h^{3}}\left(\frac{\varepsilon}{A}\right)^{2 / s} \frac{1}{s}\left(\frac{\varepsilon}{A}\right)^{1 / s-1} d \varepsilon \sim V \varepsilon^{3 / s-1} d \varepsilon
$$

Thus,

$$
\begin{aligned}
N_{e x c} & =\text { const } \cdot V \int_{0}^{\infty} \frac{\varepsilon^{3 / s-1} d \varepsilon}{e^{\varepsilon / k T}-1} \quad\left[\text { set } \frac{\varepsilon}{k T}=x\right] \\
& =\text { const } \cdot V(k T)^{3 / s} \propto T^{3 / s}
\end{aligned}
$$

a) T_{B} is determined by the condition $N_{e x c}=N$, it follows that $T_{B} \propto\left(\frac{N}{V}\right)^{s / 3}$.

[^1]b) Since $N_{e x c} \propto T^{3 / s}$ we get
$$
\frac{N_{e x c}}{N}=\left(\frac{T}{T_{B}}\right)^{3 / s} \therefore \frac{N_{0}}{N}=1-\left(\frac{T}{T_{B}}\right)^{3 / s} .
$$
c) it is now straightforward to show that
$$
U=\int_{0}^{\infty} \varepsilon \bar{N}(\varepsilon) g(\varepsilon) d \varepsilon \sim T^{3 / s+1}
$$

Hence, $C_{v} \sim T^{3 / s}$ and $S=\int_{0}^{T} \frac{C_{v} d T}{T} \Rightarrow S \sim T^{3 / s}$.

[^0]: ${ }^{1}$ Note, this expression simply comes from $\bar{N}=\int_{0}^{\infty} N(\nu) d \nu=\int_{0}^{\infty} \frac{g(\nu) d \nu}{e^{h \nu / k T}-1}=8 \pi V\left(\frac{k T}{h c}\right)^{3} \int_{0}^{\infty} \frac{x^{2} d x}{e^{x}-1}$ and the dimensionless integral can be evaluated numerically to give 2.404.
 ${ }^{2}$ For reference, see equation (6.26)

[^1]: ${ }^{3}$ This is because at temperatures near zero, $N_{0} \approx N$ and so $\varepsilon \approx 0$. This implies that $N \approx\left(e^{-\mu / k T}-1\right)^{-1}$ and thus $-\mu / k T \approx \ln \left(1+\frac{1}{N}\right) \approx \frac{1}{N}$, so for a large collection of particles the chemical potential is essentially zero in the region near Bose-Einstein condensation.

