Physics 140B: Homework 2 Due Jan 28, 2010

1. A problem from the previous chapters:

Consider a gas consisting of 1 kilomole of Helium-4 atoms at 0° C and at atmospheric pressure.

a) Using Maxwell's law of distribution of speeds (11.28), determine the number of atoms in this gas whose energy ε lies within an interval of width 10^{-22} J around the mean value of ε . viz. $\frac{3}{2}kT$.

Hint: For this, it may be better that you first express Maxwell's distribution law in terms of the variable ε , rather than v.

- b) Next, using expression (12.25), determine the number of "single-particle energy states" that lie within the energy interval specified above.
- c) Finally, determine the *mean* number of particles *per* energy state in this range of ε .
- 2. Solve Carter's problem 18.6.
- 3. Solve Carter's Problem 18.9.

Hint: For this, write $U = u(T) \cdot V$ and $P = \frac{1}{3}u(T)$, to finally show that $u \propto T^4$.

- 4. Solve Carter's problem 18.16.
- 5. Consider a Bose-Einstein gas, in three dimensions, consisting of particles with energymomentum relationship $\varepsilon = Ap^s$, where A is a constant and s a number; the values s = 1 and s = 2 are quite familiar, but here s is unspecified.

Examine the phenomenon of Bose-Einstein condensation in this gas and determine

- a) the manner in which the condensation temperature T_B , depends on the particle density N/V,
- b) the manner in which the condensate fraction N_0/N varies with T, and

c) the manner in which the specific heat C_v , and the entropy S of the gas vary with T when $T < T_B$.

Hint: in lieu of the number of "single-particle energy states", $g(\varepsilon)d\varepsilon$ *, make use of the phase space expression* $4\pi V \frac{p^2 dp}{h^3}$.