Physics 140B: Homework 2
 Due Jan 28, 2010

1. A problem from the previous chapters:

Consider a gas consisting of 1 kilomole of Helium- 4 atoms at $0^{\circ} \mathrm{C}$ and at atmospheric pressure.
a) Using Maxwell's law of distribution of speeds (11.28), determine the number of atoms in this gas whose energy ε lies within an interval of width $10^{-22} \mathrm{~J}$ around the mean value of ε. viz. $\frac{3}{2} k T$.
Hint: For this, it may be better that you first express Maxwell's distribution law in terms of the variable ε, rather than v.
b) Next, using expression (12.25), determine the number of "single-particle energy states" that lie within the energy interval specified above.
c) Finally, determine the mean number of particles per energy state in this range of ε.
2. Solve Carter's problem 18.6.
3. Solve Carter's Problem 18.9.

Hint: For this, write $U=u(T) \cdot V$ and $P=\frac{1}{3} u(T)$, to finally show that $u \propto T^{4}$.
4. Solve Carter's problem 18.16.
5. Consider a Bose-Einstein gas, in three dimensions, consisting of particles with energymomentum relationship $\varepsilon=A p^{s}$, where A is a constant and s a number; the values $s=1$ and $s=2$ are quite familiar, but here s is unspecified.

Examine the phenomenon of Bose-Einstein condensation in this gas and determine
a) the manner in which the condensation temperature T_{B}, depends on the particle density N / V,
b) the manner in which the condensate fraction N_{0} / N varies with T, and
c) the manner in which the specific heat C_{v}, and the entropy S of the gas vary with T when $T<T_{B}$.

Hint: in lieu of the number of "single-particle energy states", $g(\varepsilon) d \varepsilon$, make use of the phase space expression $4 \pi V \frac{p^{2} d p}{h^{3}}$.

