Physics 140B: Homework 1 Solutions

1. The total number of diatomic molecules $=1,000$. The temperature of the system $=\frac{1}{2} \theta_{v i b}$.
a) By equation (15.6),

$$
\bar{N}_{j}=N e^{-2 j}\left(1-e^{-2}\right)
$$

Thus we get

$$
\begin{aligned}
& \bar{N}_{0}=1000\left(1-e^{-2}\right) \approx 865 \quad(j=0) \\
& \bar{N}_{1}=1000 e^{-2}\left(1-e^{-2}\right) \approx 117 \quad(j=1) \\
& \bar{N}_{2}=1000 e^{-4}\left(1-e^{-2}\right) \approx 16 \quad(j=2)
\end{aligned}
$$

b) By equation (15.8)

$$
\frac{U}{N}=k \theta_{v i b}\left(\frac{1}{2}+\frac{1}{e^{2}-1}\right) \approx 0.6565 k \theta_{v i b}
$$

2.

$$
\begin{equation*}
p_{j}=\frac{g_{j} e^{-\varepsilon_{j} / k T}}{Z}=\frac{(2 j+1) e^{-j(j+1) \hbar^{2} / 2 I k T}}{\sum_{j}(2 j+1) e^{-j(j+1) \hbar^{2} / 2 I k T}} \tag{1}
\end{equation*}
$$

For $T \gg \theta_{\text {rot }}\left(\equiv \frac{\hbar^{2}}{2 I k}\right.$), the eigenvalue ε_{j} (and the quantum number j) may be treated as continuous variables, so that

$$
\begin{equation*}
d \varepsilon=\frac{\hbar^{2}}{2 I}(2 j+1) d j \tag{2}
\end{equation*}
$$

It follows from Equations (1) and (2) that

$$
p(\varepsilon) d \varepsilon=\frac{e^{-\varepsilon / k T} d \varepsilon / k \theta_{r o t}}{\int_{0}^{\infty} e^{-\varepsilon / k T} d \varepsilon / k \theta_{r o t}}=\frac{1}{k T} e^{-\varepsilon / k T} d \varepsilon
$$

The desired fraction then turns out to be

$$
\int_{k T}^{\infty} \frac{1}{k T} e^{-\varepsilon / k T} d \varepsilon=-\left.e^{-\varepsilon / k T}\right|_{k T} ^{\infty}=e^{-1} \approx 0.368
$$

3. According to the Einstein model, (Equation 16.2)

$$
C_{v}=3 N k\left(\frac{\theta_{E}}{T}\right)^{2} \frac{e^{\theta_{E} / T}}{\left(e^{\theta_{E} / T}-1\right)^{2}}
$$

With $N=N_{A}, T=150 K$ and $\theta_{E}=1450 K$, we get

$$
C_{v}=147.7 \mathrm{~J} \text { kilomole }^{-1} K^{-1}
$$

According to the Debye model (Equation 16.19), since $T<0.1 \theta_{D}$,

$$
C_{v}=\frac{12 \pi^{4}}{5} N k\left(\frac{T}{\theta_{D}}\right)^{3}
$$

With $N=N_{A}, T=150 K$ and $\theta_{D}=1860 K$, we get

$$
C_{v}=1019 \mathrm{~J} \text { kilomole }^{-1} K^{-1}
$$

4. a) Wien's Displacement Law says that

$$
\lambda_{\max } \cdot T=2.90 \times 10^{-3} \mathrm{mK}
$$

With, $\lambda_{\max }=480 \times 10^{-9} \mathrm{~m}$, we obtain $T=6040 \mathrm{~K}$. Note that $\lambda_{\max }$ falls well within the visible part of the spectrum!

- Next, the radiative flux (per unit surface area per unit time) $=\sigma T^{4}$ (StefanBoltzmann Law).
\therefore Total Radiative Power emitted by the Sun, L is given by

$$
\begin{aligned}
L & =\sigma T^{4} \cdot A_{\text {Sun }} \\
& =\sigma T^{4}\left(4 \pi R_{\text {sun }}^{2}\right) \\
& =\left(5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}\right) \times(6040 \mathrm{~K})^{4} \times 4 \pi\left(7 \times 10^{8} \mathrm{~m}\right)^{2} \approx 4.65 \times 10^{26} \mathrm{~W}
\end{aligned}
$$

5. Solar radiative flux observed on the surface of the Earth, Φ is given by

$$
\Phi=\frac{L}{4 \pi D^{2}}=\frac{4.65 \times 10^{26} W}{4 \pi\left(1.5 \times 10^{11} m\right)^{2}} \approx 1645 \mathrm{Wm}^{-2}
$$

where D is the distance between the Sun and the Earth.
The total power received by the Earth would be Φ multiplied by the total normal area presented by the Earth towards the solar rays, which is $\pi R_{\text {earth }}^{2}$, i.e. the surface area of the "equatorial disk".

$$
\begin{equation*}
P_{a b s}=\Phi \cdot \pi R_{\text {earth }}^{2} \tag{3}
\end{equation*}
$$

Now, in the steady state, the Earth emits the same power from all over its surface, whose area is $4 \pi R_{\text {earth }}^{2}$. If T is the steady-state temperature of the Earth, then this radiated power would be $P_{\text {rad }}=\sigma T^{4} \cdot 4 \pi R_{\text {earth }}^{2}$. Thus, equating the two powers, we get

$$
T=\left(\frac{1645}{5.67 \times 10^{-8.4}}\right)^{1 / 4} \approx 292 K
$$

which is pretty darn close!
6. Problem 18-4 of the text
a) Differentiate expression (18.5) with respect to ν and set the result equal to zero, one gets

$$
\nu_{\max }=\frac{k T}{h} \cdot x
$$

where x is the solution of the equation

$$
e^{x}\left(1-\frac{x}{3}\right)=1
$$

A numerical solution gives: $x \approx 2.8214 \cdots$. Hence $\nu_{\max } \approx \frac{k T}{h} \cdot 2.8214$.
The value of λ that maximized expression (18.6) instead is $\frac{h c}{4.9651 k T}$, which corresponds to a frequency $\nu=\frac{k T}{h} \cdot 4.9651$.
Thus, our $\nu_{\max }$ is smaller than this ν by a factor of 1.76 .
b) In the case of the Cosmic Microwave Background

$$
\nu_{\max }=\frac{1.381 \times 10^{-23} J K^{-1} \cdot 2.7 K}{6.626 \times 10^{-34} \mathrm{Jsec}} \times 2.8214 \approx 1.59 \times 10^{11} \mathrm{~Hz}
$$

The corresponding wavelength is 1.89 mm , which falls in the "microwave" range!

