Temperature coefficient of resistivity

\[\rho = \rho_0 [1 + \alpha (T - T_o)] \]

\[R = R_0 [1 + \alpha (T - T_o)] \]

\(T_0 = \) reference temperature

\(\alpha = \) temperature coefficient of resistivity, units of \((^\circ C)^{-1}\)

For Ag, Cu, Au, Al, W, Fe, Pt, Pb: values of \(\alpha\) are \(\sim 3-5 \times 10^{-3} \ (^\circ C)^{-1}\)
Typical tungsten filament: ~1 m long, but 0.05mm in radius.

Calculate typical R.

\[A = \pi (5 \times 10^{-5} \text{m})^2 = 7.9 \times 10^{-9} \text{ m}^2 \]

\[\rho = 5.6 \times 10^{-8} \Omega \text{m} \text{ (Table 17.1)} \]

\[R = \rho \frac{L}{A} = \left(5.6 \times 10^{-8} \Omega \text{m} \right) \frac{1 \text{m}}{7.9 \times 10^{-9} \text{ m}^2} = 7.1 \Omega \]

Note: As per section 17.6, the resistivity value used above is valid only at a temperature of 20°C, so this derived value of R holds only for T=20°C.
Calculate \(\rho \) at \(T=4000^\circ\text{C} \), assuming a linear \(\rho\)-\(T \) relation:

For tungsten, \(\alpha = 4.5 \times 10^{-3}/^\circ\text{C} \)

\[
\rho = \rho_0[1+\alpha(T-T_0)] = 8.3 \times 10^{-7} \ \Omega\text{m}
\]

\[
R = \rho L/A = 106 \ \Omega.
\]

(note-- this is still less than the estimate of \(>200 \ \Omega \) we’ll derive in class in a few minutes... I suspect the \(\rho\)-\(T \) relation in reality may not be strictly linear over such a wide range of temperature; my guess would be that the above value of \(\alpha \) may only be valid for temperatures of tens to hundreds of \(^\circ\text{C} \))
Superconductors

For some materials, as temperature drops, resistance suddenly plummets to 0 below some T_c.

Once a current is set up, it can persist without any applied voltage because $R \to 0$!
Superconductors

Applications:

• Energy storage at power plants
• Superconducting magnets with much stronger magnetic fields than normal electromagnets
• Superconducting distribution power lines could eliminate resistive losses
More recently: As the field has advanced, materials with higher values of T_c get discovered.

<table>
<thead>
<tr>
<th>Material</th>
<th>T_c (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>0.88</td>
</tr>
<tr>
<td>Al</td>
<td>1.19</td>
</tr>
<tr>
<td>Sn</td>
<td>3.72</td>
</tr>
<tr>
<td>Hg</td>
<td>4.15</td>
</tr>
<tr>
<td>Pb</td>
<td>7.18</td>
</tr>
<tr>
<td>Nb</td>
<td>9.46</td>
</tr>
<tr>
<td>Nb$_3$Sn</td>
<td>18.05</td>
</tr>
<tr>
<td>Nb$_3$Ge</td>
<td>23.2</td>
</tr>
<tr>
<td>YBa$_2$Cu$_3$O$_7$</td>
<td>90</td>
</tr>
<tr>
<td>Bi–Sr–Ca–Cu–O</td>
<td>105</td>
</tr>
<tr>
<td>Tl–Ba–Ca–Cu–O</td>
<td>125</td>
</tr>
<tr>
<td>HgBa$_2$Ca$_2$Cu$_3$O$_8$</td>
<td>134</td>
</tr>
</tbody>
</table>
Electrical Energy and Power

Power dissipated in a R is due to collisions of charge carriers with the lattice. Electrical potential energy is converted to thermal energy in the resistor--a light bulb filament thus glows or toaster filaments give off heat (and turn orange)
Power dissipated in a resistor

Power = work / time = \(q \Delta V / \Delta t \)

\[P = I \times \Delta V \]

\[P = I^2 \times R \]

\[P = \Delta V^2 / R \]

UNITs:

\[P = I \times V = \text{Amp} \times \text{Volt} = \text{C/s} \times \text{J/C} = \text{J/s} = \text{WATT} \]
Example: A typical household incandescent lightbulb is connected to a 120V outlet. The power output is 60 Watts. What's the current through the bulb? What’s R of the filament?
Example: A typical household incandescent lightbulb is connected to a 120V outlet. The power output is 60 Watts. What's the current through the bulb? What’s R of the filament?

\[\Delta V = 120 \text{ V (rel. to ground)} \]
\[P = I \Delta V \rightarrow I = \frac{P}{\Delta V} = \frac{60\text{W}}{120\text{V}} = 0.5 \text{ A} \]

\[P = \frac{\Delta V^2}{R} \rightarrow \quad R = \frac{\Delta V^2}{P} = \frac{(120\text{V})^2}{60 \text{ W}} = 240 \, \Omega \]

Note -- a few slides earlier, we’d estimated the typical resistance of a tungsten light bulb filament at 4000°C -- that estimate of ~106 Ω assumed for simplicity a constant coefficient of resistivity \(\alpha \) from 20°C to 4000°C, which might not be the case in reality. If the actual value of \(\alpha \) increases as \(T \) increases, then the dependence of \(\rho \) on \(T \) will also be non-linear.
A heating element in an electric range is rated at 2000 W. Find the current required if the voltage is 240 V. Find the resistance of the heating element.

\[P = I\Delta V \rightarrow I = \frac{P}{\Delta V} = \frac{2000\text{W}}{240\text{V}} = 8.3 \text{ A} \]

\[R = \frac{\Delta V^2}{P} = \frac{(240\text{V})^2}{2000\text{W}} = 28.8 \Omega \]
Cost of electrical power

1 kilowatt-hour = 1000 W * 1 hour = 1000 J/s (3600s) = 3.6e6 J.

1kWh costs about $0.13, typically

How much does it cost to keep a single 100W light bulb on for 24 hours?
(100W)*24hrs = 2400 W-hr = 2.4kWh
2.4kWh*$0.13 = $0.31

So how much does it cost per week to keep the ~40 fluorescent lights in this classroom on for 40 hours per week? (assume P=20W, since fluor. bulbs are ~4x as efficient as producing visible light as incandescent light bulbs).
40x20W*40hr = 32000 W-hr = 32kWh
32kWh*$0.13 = $4.16
How many rooms are there on campus?
Power Transmission

Transmitting electrical power is done much more efficiently at higher voltages due to the desire to minimize (I^2R) losses.

Consider power transmission to a small community which is 100 mi from the power plant and which consumes power at a rate of 10 MW.

In other words, the generating station needs to supply whatever power it takes such that $P_{\text{req}} = 10$ MW arrives at the end user (compensating for I^2R losses): $P_{\text{generated}} = P_{\text{loss}} + P_{\text{req}}$

Consider three cases:
A: $V=2000$ V; $I=5000$ A ($P_{\text{req}} = IV = 10^7$ W)
B: $V=20000$ V; $I=500$ A ($P_{\text{req}} = IV = 10^7$ W)
C: $V=200000$ V; $I=50$ A ($P_{\text{req}} = IV = 10^7$ W)
Power Transmission

Resistance/length = 0.0001 Ω / foot.
Length of transmission line = 100 mile = 528000 feet.
Total $R = 52.8 \, \Omega$.

A: $P_{\text{loss}} = I^2R = (5000A)^2(52.8\Omega) = 1.33 \times 10^3$ MW

$P_{\text{generated}} = P_{\text{loss}} + P_{\text{req}} = 1.33 \times 10^3$ MW + 10 MW = 1.34×10^3 MW

Efficiency of transmission = $P_{\text{req}} / P_{\text{generated}} = 0.75\%$

B: $P_{\text{loss}} = I^2R = (500A)^2(52.8\Omega) = 13.3$ MW

$P_{\text{generated}} = P_{\text{loss}} + P_{\text{req}} = 13.3$ MW + 10 MW = 23.3 MW

Efficiency of transmission = $P_{\text{req}} / P_{\text{generated}} = 43\%$

C: $P_{\text{loss}} = I^2R = (50A)^2(52.8\Omega) = 0.133$ MW

$P_{\text{generated}} = P_{\text{loss}} + P_{\text{req}} = 0.133$ MW + 10 MW = 10.133 MW

Efficiency of transmission = $P_{\text{req}} / P_{\text{generated}} = 98.7\%$ (most reasonable)

*Lower current during transmission yields a reduction in P_{loss}.
You can do the same exercise for local distribution lines (assume $P_{\text{req}} = 0.1 \text{ MW}$), which are usually a few miles long (so the value of R is \sim a few) and need to distribute power from substations to local neighborhoods at a voltage of at least a few thousand volts (keeping currents under $\sim 30\text{A}$, roughly) to have a transmission efficiency above $\sim 90\%$.
Ch 18: Direct-Current Circuits

EMF

Resistors in Series & in Parallel

Kirchhoff’s Junction & Loop Rules for complex circuits

RC Circuits

Household circuits & Electrical Safety
Sources of EMF

In a closed circuit, the source of EMF is what drives and sustains the current.

EMF = work done per charge: Joule / Coulomb = Volt
Sources of EMF

In a closed circuit, the source of EMF is what drives and sustains the current.

EMF = work done per charge: Joule / Coulomb = Volt

Assume internal resistance \(r \) of battery is negligible.

Here, \(\mathcal{E} = IR \)
From A to B: Potential increases by $\Delta V = +\varepsilon$

From B to A: Potential decreases by $\Delta V = -\varepsilon$.

From C to D: Potential decreases by $\Delta V = -IR = -\varepsilon$
If circuit is grounded: V at points A & D will be zero.

From A to B: Potential increases by \(\Delta V = +\varepsilon \)

From B to A: Potential decreases by \(\Delta V = -\varepsilon \).

From C to D: Potential decreases by \(\Delta V = -IR = -\varepsilon \)
Why is this useful?

The middle voltage can be 'tailored' to any voltage we desire (between 0 and \(\varepsilon \)) by adjusting \(R_1 \) and \(R_2 \)!
Resistors connected in series

What’s R_{eq} in terms of R_1 and R_2?

$\Delta V = I R_{eq}$
Resistors connected in series

Note: Current is the same in R_1 and R_2.

$\Delta V_1 = IR_1$

$\Delta V_2 = IR_2$

$\Delta V = \Delta V_1 + \Delta V_2$

$\Delta V = IR_1 + IR_2 = I(R_1+R_2)$

$\Delta V = IR_{eq}$

$R_{eq} = R_1 + R_2$

For N resistors in series:

$R_{eq} = R_1 + R_2 + \ldots + R_N$

Note that R_{eq} is larger than any one individual R value.
Resistors connected in series

Find R_{eq}:

$$R_{eq} = 4\Omega + 7\Omega + 1\Omega + 2\Omega = 14\Omega$$
Understanding the Series Law

\[R = \rho \frac{L}{A} \]

means \(R \) is prop.to \(L \)

Total \(R \) is prop. to \((L_1 + L_2) \)