7-29. (a) Every increment of charge follows a circular path of radius R and encloses an area
πR^{2}, so the magnetic moment is the total current times this area. The entire charge
Q rotates with frequency $f=\omega / 2 \pi$, so the current is

$$
\begin{aligned}
& i=Q f=q \omega / 2 \pi \\
& \mu=i A=(Q \omega / 2 \pi)\left(\pi R^{2}\right)=Q \omega R^{2} / 2 \\
& L=I \omega=\frac{1}{2} M R^{2} \omega \\
& g=\frac{2 M \mu}{Q L}=\frac{2 M Q \omega R^{2} / 2}{Q M R^{2} \omega / 2}=2
\end{aligned}
$$

(b) The entire charge is on the equatorial ring, which rotates with frequency $f=\omega / 2 \pi$.

$$
\begin{aligned}
& i=Q f=Q \omega / 2 \pi \\
& \mu=i A=(Q \omega / 2 \pi)\left(\pi R^{2}\right)=Q \omega R^{2} / 2 \\
& g=\frac{2 M \mu}{Q L}=\frac{2 M Q \omega R^{2} / 2}{Q M R^{2} \omega / 5}=5 / 2=2.5
\end{aligned}
$$

7-33. (a) There should be four lines corresponding to the four m_{J} values $-3 / 2,-1 / 2$, $+1 / 2,+3 / 2$.
(b) There should be three lines corresponding to the three m_{ℓ} values $-1,0,+1$.
$7-35$. For
$\ell=2, \quad L=\sqrt{\ell(\ell+1)} \hbar=\sqrt{6} \hbar=2.45 \hbar, \quad j=\ell \pm 1 / 2=3 / 2,5 / 2$ and $J=\sqrt{j(j+1)} \hbar$
For $j=3 / 2, \quad J=\sqrt{(3 / 2)(3 / 2+1)} \hbar=\sqrt{15 / 4} \hbar=1.94 \hbar$
For $j=5 / 2, \quad J=\sqrt{(5 / 2)(5 / 2+1)} \hbar=\sqrt{35 / 4} \hbar=2.96 \hbar$

7-39. (a) $\boldsymbol{L}=\boldsymbol{L}_{1}+\boldsymbol{L}_{2}$

$$
\ell=\left(\ell_{1}+\ell_{2}\right),\left(\ell_{1}+\ell_{2}-1\right), \ldots,\left|\ell_{1}-\ell_{2}\right|=(1+1),(1+1-1),(1-1)=2,1,0
$$

(b) $\boldsymbol{S}=\boldsymbol{S}_{1}+\boldsymbol{S}_{2}$
$s=\left(s_{1}+s_{2}\right),\left(s_{1}+s_{2}-1\right), \ldots,\left|s_{1}-s_{2}\right|=(1 / 2+1 / 2),(1 / 2-1 / 2)=1,0$
(c) $\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}$

$$
j=(\ell+s),(\ell+s-1), \ldots,|\ell-s|
$$

For $\ell=2$ and $s=1, j=3,2,1$

$$
\ell=2 \text { and } s=0, j=2
$$

For $\ell=1$ and $s=1, j=2,1,0$

$$
\ell=1 \text { and } s=0, j=1
$$

For $\ell=0$ and $s=1, j=1$

$$
\ell=0 \text { and } s=0, j=0
$$

(d) $\boldsymbol{J}_{1}=\boldsymbol{L}_{1}+\boldsymbol{S}_{1} \quad j_{1}=\ell_{1} \pm 1 / 2=3 / 2,1 / 2$
$\boldsymbol{J}_{2}=\boldsymbol{L}_{2}+\boldsymbol{S}_{2} \quad j 2=\ell_{2} \pm 1 / 2=3 / 2,1 / 2$
(e) $\boldsymbol{J}=\boldsymbol{J}_{1}+\boldsymbol{J}_{2} \quad j=\left(j_{1}+j_{2}\right),\left(j_{1}+j_{2}-1\right), \ldots,\left|j_{1}-j_{2}\right|$

For $j_{1}=3 / 2$ and $j_{2}=3 / 2, j=3,2,1,0$

$$
j_{1}=3 / 2 \text { and } j_{2}=1 / 2, j=2,1
$$

For $j_{1}=1 / 2$ and $j_{2}=3 / 2, j=2,1$

$$
j_{1}=1 / 2 \text { and } j_{2}=1 / 2, j=1,0
$$

These are the same values as found in (c).
7-40. (a) $E_{3 / 2}=\frac{h c}{\lambda}$ Using values from Figure 7-22,

$$
E_{3 / 2}=\frac{1239.852 \mathrm{eV} \mathrm{~nm}}{588.99 \mathrm{~nm}}=2.10505 \mathrm{eV} \quad E_{1 / 2}=\frac{1239.852 \mathrm{eV} \mathrm{~nm}}{589.59 \mathrm{~nm}}=2.10291 \mathrm{eV}
$$

(b) $\Delta E=E_{3 / 2}-E_{1 / 2}=2.10505 \mathrm{eV}-2.10291 \mathrm{eV}=2.14 \times 10^{-3} \mathrm{eV}$
(c) $\Delta E=2 \mu_{B} B \rightarrow B=\frac{\Delta E}{2 \mu_{B}}=\frac{2.14 \times 10^{-3} \mathrm{eV}}{2\left(5.79 \times 10^{-4} \mathrm{eV} / \mathrm{T}\right)}=18.5 \mathrm{~T}$
$7-43$. (a) For electrons: Including spin, two are in the $n=1$ state, two are in the $n=2$ state, and
one is in the $n=3$ state. The total energy is then:

$$
E=2 E_{1}+2 E_{2}+E_{3} \quad \text { where } E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m L^{2}} \quad E=2 E_{1}+2\left(2^{2} E_{1}\right)+\left(3^{2} E_{1}\right)=19 E_{1}
$$

where

$$
E_{1}=\frac{(h c)^{2} \pi^{2}}{2 m_{e} c^{2} L^{2}}=\frac{(197.3)^{2} \pi^{2}}{2\left(0.511 \times 10^{6}\right)(1.0)^{2}}=0.376 \mathrm{eV} \quad E=19 E_{1}=7.14 \mathrm{eV}
$$

(b) Pions are bosons and all five can be in the $n=1$ state, so the total energy is:

$$
E=5 E_{1} \quad \text { where } E_{1}=\frac{0.376 \mathrm{eV}}{264}=0.00142 \mathrm{eV} \quad E=5 E_{1}=0.00712 \mathrm{eV}
$$

7-44. (a) Carbon: $Z=6 ; \quad 1 s^{2} 2 s^{2} 2 p^{2}$
(b) Oxygen: $Z=8 ; \quad 1 s^{2} 2 s^{2} 2 p^{4}$
(c) Argon: $Z=18 ; \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

7-45. Using Figure 7-34:
$\operatorname{Sn}(Z=50)$

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{2}
$$

$\mathrm{Nd}(Z=60)$

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 4 f^{4} 6 s^{2}
$$

$\mathrm{Yb}(Z=70)$

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 6 s^{2}
$$

Comparison with Appendix C.
Sn : agrees
$\mathrm{Nd}: 5 p^{6}$ and $4 f^{4}$ are in reverse order
Yb : agrees

7-46. Both $G a$ and In have electron configurations $(n s)^{2}(n p)$ outside of closed shells $(n-1, s)^{2}(n-1, p)^{6}(n-1, d)^{10}$. The last p electron is loosely bound and is more easily removed than one of the s electrons of the immediately preceding elements $Z n$ and $C d$.

7-48. $\quad E_{n}=-\frac{Z_{e f f}^{2} E_{1}}{n^{2}} \quad$ (Equation 7-25)

$$
Z_{e f f}=n \sqrt{\frac{-E_{n}}{E_{1}}}=3 \sqrt{\frac{5.14 e V}{13.6 e V}}=1.84
$$

7-49. (a) Fourteen electrons, so $Z=14$. Element is silicon.
(b) Twenty electrons, so $Z=20$. Element is calcium.

7-50. (a) For a d electron, $\ell=2$, so $L_{z}=-2 \hbar,-1 \hbar, 0,1 \hbar, 2 \hbar$
(b) For an f electron, $\ell=3$, so $L_{z}=-3 \hbar,-2 \hbar,-1 \hbar, 0,1 \hbar, 2 \hbar, 3 \hbar$

7-56. (a) $E_{1}=-13.6 \mathrm{eV}(Z-1)^{2}=-13.6 \mathrm{eV}(74-1)^{2}=-7.25 \times 10^{4} \mathrm{eV}=-72.5 \mathrm{keV}$
(b) $E_{1}(\exp)=-69.5 \mathrm{keV}=-13.6 \mathrm{eV}(Z-\sigma)^{2}=-13.6 \mathrm{eV}(74-1)^{2}$

$$
\begin{aligned}
74-\sigma & =\left(69.5 \times 10^{3} \mathrm{eV} / 13.6 \mathrm{eV}\right)^{1 / 2}=71.49 \\
\sigma & =74-71.49=2.51
\end{aligned}
$$

7-58. (a) $\Delta E=h c / \lambda$

$$
\begin{aligned}
& E\left(3 P_{1 / 2}\right)-E\left(3 S_{1 / 2}\right)=\frac{1240 \mathrm{eV} \mathrm{~nm}}{589.59 \mathrm{~nm}}=2.10 \mathrm{eV} \\
& E\left(3 P_{1 / 2}\right)=E\left(3 S_{1 / 2}\right)+2.10 \mathrm{eV}=-5.14 \mathrm{eV}+2.10 \mathrm{eV}=-3.04 \mathrm{eV} \\
& E(3 D)-E\left(3 P_{1 / 2}\right)=\frac{1240 \mathrm{eV} \mathrm{~nm}}{818.33 \mathrm{~nm}}=1.52 \mathrm{eV} \\
& E(3 D)=E\left(3 P_{1 / 2}\right)+1.52 \mathrm{eV}=-3.04 \mathrm{eV}+1.52 \mathrm{eV}=-1.52 \mathrm{eV}
\end{aligned}
$$

(b) For $3 P: \quad Z_{e f f}=3 \sqrt{\frac{3.04 e V}{13.6 e V}}=1.42$

For $3 D: \quad Z_{e f f}=3 \sqrt{\frac{1.52 \mathrm{eV}}{13.6 \mathrm{eV}}}=1.003$
(c) The Bohr formula gives the energy of the $3 D$ level quite well, but not the $3 P$ level.

7-59. (a) $\Delta E=g m_{j} \mu_{B} B$ (Equation 7-72) where $s=1 / 2, \ell=0$ gives $j=1 / 2$ and (from Equation 7-73) $g=2 . \quad m_{j}= \pm 1 / 2$.

$$
\Delta E=(2)(\pm 1 / 2)\left(5.79 \times 10^{-5} \mathrm{eV} / \mathrm{T}\right)(0.55 \mathrm{~T})= \pm 3.18 \times 10^{-5} \mathrm{eV}
$$

The total splitting between the $m_{j}= \pm 1 / 2$ states is $6.37 \times 10^{-5} \mathrm{eV}$.
(b) The $m_{j}=1 / 2$ (spin up) state has the higher energy.
(c) $\Delta E=h f \rightarrow f=\Delta E / h=6.37 \times 10^{-5} \mathrm{eV} / 4.14 \times 10^{-15} \mathrm{eV} s=1.54 \times 10^{10} \mathrm{~Hz}$ This is in the microwave region of the spectrum.

7-61.
(a) $\Delta E=\frac{e \hbar}{2 m} B=\left(5.79 \times 10^{-5} \mathrm{eV} / \mathrm{T}\right)(0.05 \mathrm{~T})=2.90 \times 10^{-6} \mathrm{eV}$
(b) $|\Delta \lambda|=\frac{\lambda^{2}}{h c} \Delta E=\frac{(579.07 \mathrm{~nm})^{2}\left(2.90 \times 10^{-6} \mathrm{eV}\right)}{1240 \mathrm{eV} \mathrm{nm}}=7.83 \times 10^{-4} \mathrm{~nm}$
(c) The smallest measurable wavelength change is larger than this by the ratio $0.01 \mathrm{~nm} / 7.83 \times 10^{-4} \mathrm{~nm}=12.8$. The magnetic field would need to be increased by this
same factor because $B \propto \Delta E \propto \Delta \lambda$. The necessary field would be 0.638 T .
7-66. $\quad \theta_{\text {min }}=\cos ^{-1}\left[m_{\ell} \hbar / \sqrt{\ell(\ell+1)} \hbar\right]$ with $m_{\ell}=\ell$.
$\cos \theta_{\text {min }}=\ell \sqrt{\ell(\ell+1)}$. Thus, $\cos ^{2} \theta_{\text {min }}=\ell^{2} /[\ell(\ell+1)]=1-\sin ^{2} \theta_{\text {min }}$
or, $\sin ^{2} \theta_{\text {min }}=1-\frac{\ell^{2}}{\ell(\ell+1)}=\frac{\ell(\ell+1)-\ell^{2}}{\ell(\ell+1)}=\frac{\ell^{2}+\ell-\ell^{2}}{\ell(\ell+1)}$
And, $\sin \theta_{\text {min }}=\left(\frac{1}{\ell+1}\right)^{1 / 2} \quad$ For large $\ell, \theta_{\text {min }}$ is small.
Then $\sin \theta_{\text {min }} \approx \theta_{\text {min }}=\left(\frac{1}{\ell+1}\right)^{1 / 2} \approx \frac{1}{(\ell)^{1 / 2}}$

