7-9. (a) For $n=3, \ell=0,1,2$
(b) For $\ell=0, m=0$. For $\ell=1, m=-1,0,+1$. For $\ell=2, m=-2,-1,0,+1,+2$.
(c) There are nine different m-states, each with two spin states, for a total of 18
states for

$$
n=3 .
$$

$7-10$. (a) For $\ell=4$

$$
\begin{aligned}
& L=\sqrt{\ell(\ell+1)} \hbar=\sqrt{4(5)} \hbar=\sqrt{20} \hbar \\
& m_{\ell}=4 \hbar \\
& \theta_{\min }=\cos ^{-1} \frac{4}{\sqrt{20}} \rightarrow \theta_{\min }=26.6^{\circ}
\end{aligned}
$$

(b) For $\ell=2$

$$
\begin{aligned}
& L=\sqrt{6} \hbar \quad m_{\ell}=2 \hbar \\
& \theta_{\text {min }}=\cos ^{-1} \frac{2}{\sqrt{6}} \rightarrow \theta_{\text {min }}=35.3^{\circ}
\end{aligned}
$$

7-12. (a)

(b)

$$
\begin{aligned}
& \ell=2 \\
& |\mathbf{L}|=\sqrt{6} \hbar
\end{aligned}
$$

(c)

(d) $|\boldsymbol{L}|=\sqrt{\ell(\ell+1)} \hbar$ (See diagrams above.)

7-13. $L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2} \rightarrow L_{x}^{2}+L_{y}^{2}=L^{2}-L_{z}^{2}=\ell(\ell+1) \hbar^{2}-(m \hbar)^{2}=\left(6-m^{2}\right) \hbar^{2}$
(a) $\left(L_{x}^{2}+L_{y}^{2}\right)_{\text {min }}=\left(6-2^{2}\right) \hbar^{2}=2 \hbar^{2}$
(b) $\left(L_{x}^{2}+L_{y}^{2}\right)_{\max }=\left(6-0^{2}\right) \hbar^{2}=6 \hbar^{2}$
(c) $L_{x}^{2}+L_{y}^{2}=(6-1) \hbar^{2}=5 \hbar^{2} \quad L_{x}$ and L_{y} cannot be determined separately.
(d) $n=3$

7-15. $\quad \boldsymbol{L}=\boldsymbol{r} \boldsymbol{?} \boldsymbol{p} \quad \frac{d \boldsymbol{L}}{d t}=\frac{d \boldsymbol{r}}{d t} \times \boldsymbol{p}+\boldsymbol{r} \times \frac{d \boldsymbol{p}}{d t}$
$\frac{d \boldsymbol{r}}{d t} \times \boldsymbol{p}=\boldsymbol{v} \times m \boldsymbol{v}=m \boldsymbol{v} \times \boldsymbol{v}=0$ and $\boldsymbol{r} \times \frac{d \boldsymbol{p}}{d t}=\boldsymbol{r} \times \boldsymbol{F}$. Since for $V=V(r)$, i.e., central
forces,
\boldsymbol{F} is parallel to \boldsymbol{r}, then $\boldsymbol{r} \times \boldsymbol{F}=0$ and $\frac{d \boldsymbol{L}}{d t}=0$
7-16. (a) For $\ell=3, n=4,5,6, \ldots$ and $m=-3,-2,-1,0,1,2,3$
(b) For $\ell=4, n=5,6,7, \ldots$ and $m=-4,-3,-2,-1,0,1,2,, 3,4$
(c) For $\ell=0, n=1$ and $m=0$
(d) The energy depends only on n. The minimum in each case is:

$$
\begin{aligned}
& E_{4}=-13.6 \mathrm{eV} / \mathrm{n}^{2}=-13.6 \mathrm{eV} / 4^{2}=-0.85 \mathrm{eV} \\
& E_{5}=-13.6 \mathrm{eV} / 5^{2}=-0.54 \mathrm{eV} \\
& E_{1}=-13.6 \mathrm{eV}
\end{aligned}
$$

7-17. (a) $6 f$ state: $n=6, \ell=3$
(b) $E_{6}=-13.6 \mathrm{eV} / \mathrm{n}^{2}=-13.6 \mathrm{eV} / 6^{2}=-0.38 \mathrm{eV}$
(c) $L=\sqrt{\ell(\ell+1)} \hbar=\sqrt{3(3+1)} \hbar=\sqrt{12} \hbar=3.65 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
(d) $L_{z}=m \hbar \quad L_{z}=-3 \hbar,-2 \hbar,-1 \hbar, 0,1 \hbar, 2 \hbar, 3 \hbar$

7-20. (a) For the ground state, $P(r) \Delta r=\psi^{2}\left(4 \pi r^{2}\right) \Delta r=\frac{4 r^{2}}{a_{0}^{3}} e^{-2 r / a_{0}} \Delta r$ For $\Delta r=0.03 a_{0}$, at $r=a_{0}$ we have $P(r) \Delta r=\frac{4 a_{0}^{2}}{a_{0}^{3}} e^{-2}\left(0.03 a_{0}\right)=0.0162$
(b) For
$\Delta r=0.03 a_{0}$, at $r=2 a_{0}$ we have $P(r) \Delta r=\frac{4\left(2 a_{0}\right)^{2}}{a_{0}^{3}} e^{-4}\left(0.03 a_{0}\right)=0.0088$

7-21. $\quad P(r)=C r^{2} e^{-2 Z r / a_{0}}$ For $P(r)$ to be a maximum,

$$
\frac{d P}{d t}=C\left[r^{2}\left(-\frac{2 Z}{a_{0}}\right) e^{-2 Z r / a_{0}}+2 r e^{-2 Z r / a_{0}}\right]=0 \rightarrow C \times \frac{2 Z r}{a_{0}}\left(\frac{a_{0}}{Z}-r\right) e^{-2 Z r / a_{0}}=0
$$

This condition is satisfied with $r=0$ or $r=a_{0} / Z$. For $r=0, P(r)=0$ so the maximum

$$
P(r) \text { occurs for } r=a_{0} / Z .
$$

7-22. $\int \psi^{2} d \tau=\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \psi^{2} r^{2} \sin \theta d r d \theta d \phi=1$

$$
\begin{aligned}
& =4 \pi \int_{0}^{\infty} \psi^{2} r^{2} d r=4 \pi C_{210}^{2} \int_{0}^{\infty}\left(\frac{Z r}{a_{0}}\right)^{2} r^{2} e^{-Z r / a_{0}} d r=1 \\
& =4 \pi C_{210}^{2} \int_{0}^{\infty}\left(\frac{Z^{2} r^{4}}{a_{0}^{2}}\right) e^{-Z r / a_{0}} d r=1
\end{aligned}
$$

Letting $x=Z r / a_{0}$, we have that $r=a_{0} x / Z$ and $d r=a_{0} d x / Z$ and substituting
these above,

$$
\int \psi^{2} d \tau=\frac{4 \pi a_{0}^{3} C_{210}^{2}}{Z^{3}} \int_{0}^{\infty} x^{4} e^{-x} d x
$$

Integrating on the right side

$$
\int_{0}^{\infty} x^{4} e^{-x} d x=6
$$

Solving for C_{210}^{2} yields: $C_{210}^{2}=\frac{Z^{3}}{24 \pi a_{0}^{3}} \rightarrow C_{210}=\left(\frac{Z^{3}}{24 \pi a_{0}^{3}}\right)^{1 / 2}$
7-26. For the most likely value of $r, P(r)$ is a maximum, which requires that (see Problem 7-24)

$$
\frac{d P}{d r}=A \cos ^{2} \theta\left[r^{4}\left(-\frac{Z}{a_{0}}\right) e^{-Z r / a_{0}}+4 r^{3} e^{-Z r / a_{0}}\right]=0
$$

For hydrogen $Z=1$ and $A \cos ^{2} \theta\left(r^{3} / a_{0}\right)\left(4 a_{0}-r\right) e^{-r / a_{0}}=0$. This is satisfied for $r=0$
and $r=4 a_{0}$. For $r=0, P(r)=0$ so the maximum $P(r)$ occurs for $r=4 a_{0}$.
7-33. (a) There should be four lines corresponding to the four m_{J} values $-3 / 2,-1 / 2$, $+1 / 2,+3 / 2$.
(b) There should be three lines corresponding to the three m_{ℓ} values $-1,0,+1$.

7-68. $\quad P(r)=\frac{4 Z^{3}}{a_{0}^{3}} r^{2} e^{-2 Z r / a_{0}} \quad$ (See Problem 7-63)
For hydrogen, $Z=1$ and at the edge of the proton $r=R_{0}=10^{-15} \mathrm{~m}$. At that point, the
exponential factor in $P(\mathrm{r})$ has decreased to:

$$
e^{-2 R_{0} / a_{0}}=e^{-2\left(10^{-15}\right) /\left(0.529 \times 10^{-10} m\right)}=e^{-\left(3.78 \times 10^{-5}\right)} \approx 1-3.78 \times 10^{-5} \approx 1
$$

Thus, the probability of the electron in the hydrogen ground state being inside the nucleus,
to better than four figures, is:

$$
\begin{aligned}
P(r)=\frac{4 r^{2}}{a_{0}^{3}} \quad P & =\int_{0}^{r_{0}} P(r) d r=\int_{0}^{R_{0}} \frac{4 r^{2}}{a_{0}^{3}}=\frac{4}{a_{0}^{3}} \int_{0}^{R_{0}} r^{2} d r=\left.\frac{4}{a_{0}^{3}} \frac{r^{3}}{3}\right|_{0} ^{R_{0}} \\
& =\frac{4}{a_{0}^{3}}\left(\frac{R_{0}^{3}}{3}\right)=\frac{4\left(10^{-15} \mathrm{~m}\right)^{3}}{3\left(0.529 \times 10^{-10} \mathrm{~m}\right)^{3}}=9.0 \times 10^{-15}
\end{aligned}
$$

7-70. (a) Substituting $\psi(r, \theta)$ into Equation 7-9 and carrying out the indicated operations
yields (eventually):
$-\frac{\hbar^{2}}{2 \mu} \psi(r, \theta)\left[2 / r^{2}-1 / 4 a_{0}^{2}\right]-\frac{\hbar^{2}}{2 \mu} \psi(r, \theta)\left(-2 / r^{2}\right)+V \psi(r, \theta)=E \psi(r, \theta)$
Canceling $\psi(r, \theta)$ and recalling that $r^{2}=4 a_{0}^{2}$ (because ψ given is for $n=2$)
we

$$
\text { have }-\frac{\hbar^{2}}{2 \mu}\left(-1 / 4 a_{0}^{2}\right)+v=E
$$

The circumference of the $n=2$ orbit is:

$$
C=2 \pi\left(4 a_{0}\right)=2 \lambda \rightarrow a_{0}=\lambda / 4 \pi=1 / 2 k .
$$

$$
\text { Thus, }-\frac{\hbar^{2}}{2 \mu}\left(-\frac{1}{4 / 4 k^{2}}\right)+V=E \rightarrow \frac{\hbar^{2} k^{2}}{2 \mu}+V=E
$$

(b) or $\frac{p^{2}}{2 m}+v=E$ and Equation 7-9 is satisfied.

$$
\begin{aligned}
& \int_{0}^{\infty} \psi^{2} d x=\int A^{2}\left(\frac{r}{a_{0}}\right)^{2} e^{-r / a_{0}} \cos ^{2} \theta r^{2} \sin \theta d r d \theta d \phi=1 \\
& A^{2} \int_{0}^{\infty}\left(\frac{r}{a_{0}}\right)^{2} e^{-r / a_{0}} r^{2} d r \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \int_{0}^{2 \pi} d \phi=1
\end{aligned}
$$

Integrating (see Problem 7-22),

$$
\begin{aligned}
& A^{2}\left(6 a_{0}^{3}\right)(2 / 3)(2 \pi)=1 \\
& A^{2}=1 / 8 a_{0}^{3} \pi \rightarrow A=\sqrt{1 / 8 a_{0}^{3} \pi}
\end{aligned}
$$

