1. Double slit interference

\[dsin \theta = \frac{\lambda}{2} \]

\[d_{best} = \frac{\lambda_{best}}{2 \sin \theta_{best}} = \frac{500 \text{ nm}}{2 \sin (6.5^\circ)} = 220.8 \text{ nm} \]

\[8d = \sqrt{\left(\frac{2d}{\sin \theta}\right)^2 + \left(\frac{\lambda \cos \theta}{2 \sin \theta}
ight)^2} \]

\[= \sqrt{\left(\frac{3 \lambda}{2 \sin \theta}\right)^2 + \left(\frac{\lambda \cos \theta}{2 \sin \theta}\right)^2} \]

\[= 311.6 \text{ nm} \]

\[d = 2200 \pm 300 \text{ nm} \]

2. \(\chi^2 \) fit

a) \[\chi^2 = \sum \frac{(Y_i - f(x_i))^2}{\sigma^2} \]

\[= \sum \frac{(Y_i - Bx_i)^2}{\sigma^2} \]

b) Best fit value for B: Minimize \(\chi^2 \) (error) with respect to B

\[\frac{d\chi^2}{dB} = 0 \]

\[2\chi^2 = \sum \frac{2}{\sigma_i^2} (Y_i - Bx_i)(-x_i) \]

\[0 = \sum x_i Y_i - B \sum x_i^2 \]

\[B = \frac{\sum x_i Y_i}{\sum x_i^2} \]

3. Counting Number Problem

a) In book def of Poisson distribution, \(P_n(n) = e^{-\mu} \frac{\mu^n}{n!} \), where \(\mu \) is the number of counts in some time interval \(T \) and \(\mu \) is the expected (average) number of counts in time \(T \). In this problem, \(\mu \) is given as an expected rate, so the expected \(n \) of counts in time \(T \) is \(\mu T \).

\[P_{\mu T}(n) = e^{-\mu T} \frac{(\mu T)^n}{n!} \]

b) \(T = 4 \text{ min.} \)

\[\text{expected counts} = 4, \mu = 4 \Rightarrow P = e^{-4} \cdot 4^4 / 4! = 0.195 \]

c) Poisson \(\rightarrow \) Gaussian when expected \(n \) counts is large (\(\mu T \gg 1 \))

d) mean \(\bar{x} = 8 \), s = 2, \(\sigma = \text{sqr} + (\text{mean}) = 9 \)

\[P = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{\text{mean}} e^{-\frac{(x-\bar{x})^2}{2\sigma^2}} \text{d}x = \frac{1}{\sqrt{2\pi}} \int_{-2/2}^{1} e^{-z^2/2} \text{d}z \]
4. e/Me

a) Weighted average \(\frac{\langle e/Me \rangle}{\sigma_{\%}} = \frac{\langle e/Me \rangle}{\sigma} \)

\[
(\frac{e}{m})_{av} = \frac{\sum_i w_i \cdot (\frac{e}{m})_i}{\sum_i w_i}
\]

where \(w_i = \frac{1}{\sigma_i^2} \)

\[(\frac{e}{m})_{av} = 1.75 \times 10^8 \text{ c/g} \]

b) \(\chi^2 \)

\[
E = 1.75 \times 10^8 \text{ c/g}
\]

\[
\chi^2 = \sum_k \frac{(O_k - E_k)^2}{\sigma_k^2}
\]

\[
= \frac{(1.76 - 1.75)^2}{0.2^2} + \frac{(1.90 - 1.75)^2}{0.4^2} + \frac{(1.36 - 1.75)^2}{0.9^2}
\]

\[\chi^2 = 0.21 \]

c) \(\delta = n - c \)

\(n = 3 \) (3 independent trials)

\(c = 1 \) (calculated expected value from data)

\[\therefore \delta = 2 \]

\[\widetilde{\chi^2} = \frac{\chi^2}{\delta} \]

\[\widetilde{\chi^2} = 0.11 \]

Data is consistent with hypothesis that \(\%m \) is a constant

since \(\chi^2 < 1 \).