Name_Professor S.K. Sinh \qquad
(epsilon) $0=8.85 .10^{\wedge}-12 C 2 / \mathrm{N} \cdot \mathrm{m} 2 \quad \mathrm{k}$ (Coulombic constant) $=9.010^{\wedge} 9 \mathrm{Nm} 2 / \mathrm{C} 2$ electron mass $=9.1110^{\wedge}-31 \mathrm{~kg}$ electron charge (magnitude) $=\mathrm{e}=1.610^{\wedge}-19 \mathrm{C}$
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Figure 23.1

A nonuniform electric field is directed along the x-axis at all points in space. This magnitude of the field varies with x, but not with respect to y or z. The axis of a cylindrical surface, 0.80 m long and 0.20 m in diameter, is aligned parallel to the x-axis. The electric fields E_{1} and E_{2}, at the ends of the cylindrical surface, have magnitudes of $6000 \mathrm{~N} / \mathrm{C}$ and 4000 N / C repsectively, and are directed as shown.

1) In Figure 23.1, the charge enclosed by the cylindrical surface is closest to:
A) +2.8 nC
B) -2.8 nC
() +1.4 nC
D) +0.6 nC
E) -0.6 (

since E is in x direction

$$
\begin{aligned}
& \text { Since } \pm \\
& \text { ingres }=-(6000 \\
& \text { surfocely } \\
& \text { notoat }+400 \\
&= \frac{\text { enc }}{\varepsilon_{0}}
\end{aligned}
$$

Figure 23.5 no flux goes through the walls

A hollow conducting sphere has radii of 0.80 m and 1.20 m . The sphere carries a charge of -500 ne. A point charge of +300 nC is present at the center.
2) In Figure 23.5 , the surface charge density on the inner spherical surface is closest to:
A) $-6 \times 10-8 \mathrm{C} / \mathrm{m}^{2}$
(B) $-7 \times 10-8 \mathrm{c} / \mathrm{m}^{2}$
() $+6 \times 10-8 \mathrm{C} / \mathrm{m}^{2}$
D) $+4 \times 10-8 \mathrm{C} / \mathrm{m}^{2}$
E) zero

Eiriside a conductor $=0$
So $\frac{Q_{\text {enc }}}{\varepsilon_{0}}=E A=0$
so $Q_{\text {enc }}=0$

$$
\begin{array}{r}
4 \pi r^{2} \sigma+300 n c=0 \\
r=.80 \mathrm{~m} \quad \sigma \approx-4 \times 10^{-8} \mathrm{c} / \mathrm{m}^{2}
\end{array}
$$

A charge $\mathrm{Q}=-800 \mathrm{nC}$ is uniformly distributed on a ring of 2.4 m radius. A charge $\mathrm{q}=+600 \mathrm{nC}$ is placed at the center of the ring. Points A and B are located on the axis of the ring, as shown.
3) In Figure 24.2, the electric potential is equal to zero at a point on the axis of the ring. The distance of this point from the center of the ring is closest to:
A) 2.6 m
B) 2.8 m
C) 2.4 m
D) 2.5 m
(E) 7 m

Figure 22.12

4) In Figure 22.12 , an electron of speed $4 \times 106 \mathrm{~m} / \mathrm{s}$ is fired midway between two large parallel plates. The plates are maintained at a potential difference V_{o} and are separated by 4 mm . The length of the plates in the direction of electron motion is 5 cms . What is the maximum value of the potential difference V_{0} which will not result in the electron hitting the far edge of the lower plate?
A) 12.4 V
B) 58 V
C.) 123 V
D) 37.5 V
E) 216 V

$$
\begin{aligned}
& 2 \mathrm{~mm}=\frac{1}{2} a t^{2} \\
& t=\frac{5 \mathrm{~cm}}{4 \times 10^{6} \mathrm{~m} / \mathrm{s}}=\frac{d}{v_{x}}
\end{aligned}
$$

electric field is in y direction, so it does not effect V_{x}

$$
m a=F=q E
$$

$$
a=\frac{q}{m} E
$$

$E=$ constant for parallel plates $\Rightarrow V_{0}=-E(4 \mathrm{~mm})$

$$
2 \mathrm{~mm}=\frac{1}{2} \frac{q}{m} \frac{V_{0}}{4 \mathrm{~mm}} \frac{5 \mathrm{~cm}^{2}}{\left(4 \times 10^{2}\right)^{2}} \quad\left|V_{0}\right|=.58 \mathrm{~V}
$$

