Closed book. No work needs to be shown for multiple-choice questions.

1. The electric field is given by $E = E_0(y/b)^2$ in the z direction. Find the magnitude of the flux through a square of side a in the xy plane. (Hint: the precise location of the square in xy plane is not important. For simplicity, however, it is a good idea to put one of the corners in the origin.)

 a. E_0
 b. $E_0(a/b)$
 c. $E_0(a^2/3)$
 d. $E_0a^4/(3b^2)$
 e. $E_0a^4/(9b^2)$

2. A charge of $20 \times 10^{-6} \text{ C}$ is at a position $(x=12 \text{ m}, y=0)$ and a charge of $-10 \times 10^{-6} \text{ C}$ is at a position $(x=12 \text{ m}, y=5 \text{ m})$. What is the magnitude of the force at a charge of $-4 \times 10^{-6} \text{ C}$ at the origin?

 a. $40.56 \times 10^{-9} \text{ N}$
 b. $40.56 \times 10^{-3} \text{ N}$
 c. $3.12 \times 10^{-6} \text{ N}$
 d. $40.56 \times 10^{-3} \text{ N}$
 e. $3.12 \times 10^{-3} \text{ N}$

3. Charges of $12.0 \mu \text{ C}$ and $-18.0 \mu \text{ C}$ are placed at two corners of an equilateral triangle with sides of 0.10 m. At the third corner, what is the magnitude of the electric field created by these two charges?

 a. $13.5 \times 10^6 \text{ N/C}$
 b. $9.3 \times 10^6 \text{ N/C}$
 c. $4.7 \times 10^6 \text{ N/C}$
 d. $14.3 \times 10^6 \text{ N/C}$
 e. $6.6 \times 10^5 \text{ N/C}$

4. A long, thin wire carries a uniform line charge density $\lambda = -6.8 \mu \text{ C/m}$. It is surrounded by a thick concentric cylindrical shell of inner radius 2.5 cm and outer radius 3.5 cm. What uniform charge density in shell will result in zero electric field outside of the shell?

 a. 3.6 mC/m^3
 b. 1.8 mC/m^3
 c. 5.4 mC/m^3
 d. 2.7 mC/m^3
 e. 0.9 mC/m^3
5. An isolated charged point particle produces an electric field with magnitude E at a point 2 m away. A point at which the field magnitude is $E/4$ is:

 a. 1 m away from the particle.
 b. 2 m away from the particle.
 c. 4 m away from the particle.
 d. 6 m away from the particle.
 e. 8 m away from the particle.

6. A semicircular loop of radius a carries a positive charge Q distributed uniformly over its length. Find the electric field at the center of the loop.

 a. $k_e Q / (\pi a^2)$
 b. $2k_e Q / (\pi a^2)$
 c. $k_e Q / (2\pi a^2)$
 d. $k_e Q / (a^2)$
 e. $2k_e Q / (a^2)$

7. Two charged particles are arranged as shown. In which region could a third particle, with charge +1C, be placed so that the net electric force on it is zero?

 a. I only
 b. I and II only
 c. III only
 d. I and III only
 e. II only

8. Two identical conducting balls of mass 10 grams are hung from thin threads of length 120 cm and carry the same charge q. Assume the angle the threads make from the vertical is $\theta = 20^\circ$. What is the value of each charge?

 a. 5.2×10^{-5} C.
 b. 1.6×10^{-6} C.
 c. 4.5×10^{-6} C.
 d. 8.2×10^{-7} C.
 e. Not enough information is given to solve this problem.
Recall that

\[k_c = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \text{N.m}^2/\text{C}^2 \]

and

\[\varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2/(\text{N.m}^2) \]