Clicker questions

the answers are in the lower right corner

Clicker Question 1

A tube open at both ends has a fundamental frequency of f. If one end of the tube is closed the fundamental frequency of the tube will be.
A. f
B. $2 f$
C. $\mathrm{f} / 2$
D. $4 f$

0

Clicker question 1

A fire truck is approaching a fire with its siren on at frequency f and speed of $5 \mathrm{~m} / \mathrm{s}$. The observers at the fire hear a frequency $f_{o}=$ \qquad v is the speed of sound $=340 \mathrm{~m} / \mathrm{s}$
A) $\frac{v+5}{v} f$
B) $\frac{v-5}{v} f$
C) $\frac{v}{v+5} f$
D) $\quad \frac{v}{v-5} f$

Clicker question 2

A string of length L fixed at both ends is vibrating at the frequency of the second harmonic.
There is a anti-node at a distance of \qquad from the end.
A. $\mathrm{L} / 2$
B. L/3
C. $\mathrm{L} / 4$
D. L/6

Clicker question 2

A train is approaching a tunnel in a mountain with its whistle blowing with frequency f and speed $20 \mathrm{~m} / \mathrm{s}$. The sound reflects off the mountain and is heard by an observer on the train with a frequency of \qquad —.
A) $\frac{v+20}{v-20} f$
B) $\quad \frac{v-20}{v-20} f$
C) $\frac{v+20}{v+20} f$
D) $\frac{v-20}{v+20} f$

Clicker question 3

The door in a microwave oven is glass with a metal screen and blocks microwaves from escaping. The reason why you can see the food but not feel the heat is that \qquad -.
A) Microwaves cannot pass through glass.
B) The size on the holes in the screen are larger than the wavelength of light but smaller than the wavelength of microwaves.
C) The microwaves are completely absorbed in the oven.
D) The microwaves are directed only in the vertical direction.

Clicker Question 1

A boy stands 0.2 m in front of a concave mirror with a focal length of 0.5 m . His image will be \qquad -.
A) real and upright
B) real and inverted
C) virtual and upright
D) virtual and inverted

Clicker question 3

A candle is placed 30 cm in front of a converging lens with a focal length of 20 cm . The image will be \qquad and \qquad -.
A) Real, upright
B) Real, inverted
C) Virtual, upright
D) Virtual, inverted

Clicker question 4

A candle is placed 15 cm in front of a converging lens with a focal length of 20 cm . The image will be \qquad and \qquad -.
A) Real, upright
B) Real, inverted
C) Virtual, upright
D) Virtual, inverted

Clicker question 1

Where would an object be placed in front of the converging lens below, in order to produce a real, enlarged image?

Clicker question 3

Your eye focuses on an approaching runner by changing its focal length. As the runner approaches, the focal length of the eye must \qquad .
A) increase
B) decrease
C) remain the same

Clicker question 1

For a compound microscope to have the highest angular magnification the focal length of the objective lens must be \qquad and the focal length of the eyepiece must be and the focallength of the eyepiece
long, long
B. long, short
C. short, long
D. short, short

Clicker question 3

Suppose you have light going through two crossed polarizers. What will happen if a third polarizer is placed in between the two with polarization angle of 45° ?
A) nothing will change
B) the transmitted light will decrease
C) the transmitted light will increase
D) the transmitted light will go to zero

Clicker Question 2

In a two slit interference experiment how does the distance between the peaks on the screen change if the wavelength of the light is increased?
A. increases
B. decreases
C. stays the same
D. indeterminate

Clicker question 1

A diffraction pattern is observed when a laser beam is passed through a small slit. If the slit width is made smaller the diffraction patter will \qquad _.
A. Not change
B. Be wider
C. Be narrower

Clicker Question 1

In a two slit interference experiment, how does the separation between peaks in the interference pattern change if the distance between slits is increased?
A. Increase
B. Decrease
C. Stays the same
D. Indeterminate

Clicker question 3

For the Newton's ring pattern formed by a lens the condition for the path difference at the first bright concentric ring is that
$2 \mathrm{t}=$
($\mathrm{t}=\overline{\text { the distance }}$ across the air gap, $\mathrm{n}=$ refractive index of glass)
A) $\frac{1}{2} \frac{\pi}{n}$
B) $\frac{1}{2} \lambda$
C) $\frac{\lambda}{n}$
D) λ

Clicker question 2

If light with a shorter wavelength is used in the single slit diffraction experiment. The angle to the first minimum will be \qquad -.
A) increased
B) decreased
C) remain the same
D) uncertain

B

Clicker question 3

Laser light with a wavelength of $0.5 \mu \mathrm{~m}$ is passed through a slit with a width $\mathrm{a}=0.5 \mathrm{~mm}$ (1000 times larger than λ). The first minimum in the diffraction pattern seen on a wall far away will occur at an angle of about \qquad -.
A) 10^{-2} radian
B) 10^{-3} radian
C) 10^{-4} radian
D) 10^{-5} radian

Clicker question 1

A star in the sky appears to be blue. The temperature of this star must be \qquad .
A) higher than that of the sun
B) lower than that of the sun
C) equal to that of the sun
D) about that of the earth

Clicker question 3

Photons with $\lambda=250 \mathrm{~nm}(5.0 \mathrm{eV})$ hit a metal surface and emit photoelectrons with a maximum KE of 1.0 eV . What is the work function of the metal?
A) 1.0 eV
B) 2.0 eV
C) 3.0 eV
D) 4.0 eV

D

Clicker question 4

In a photoelectric effect experiment the following data was obtained with two different metals.

Which metal has the larger work function?
A) A
B) B

Clicker question 1

An electron with an energy of 1000 eV has a de Broglie wavelength of 0.04 nm . If the speed of the electron is increased by 10 fold the wavelength will be \qquad .
A. increased by a factor of 10
B. decreased by a factor of $1 / 10$
C. increased by a factor of $\sqrt{10}$
D. decreased by a factor of $1 / \sqrt{10}$

Clicker question 1

In the Bohr model of the hydrogen atom the lowest energy state of the electron has a circumference equal to \qquad times the de Broglie wavelength of the electron
A) $1 / 2$
B) 1
C) 2
D) n

0

Clicker question 3

Suppose the rule for the orbital angular momentum quantum number is that I can have values from 0 to n. (instead of $n-1$) The number of electrons in the $\mathrm{n}=1$ shell would be
A. 2
B. 6
C. 8
D. 10

Clicker question 2

An electron with an energy of 1000 eV has a de Broglie wavelength of 0.04 nm . If the energy is increased by 10 fold the wavelength will be \qquad _.
A. increased by a factor of 10
B. decreased by a factor of $1 / 10$
C. decreased by a factor of 100
D. decreased by a factor of $1 / \sqrt{10}$

Clicker question 2

In the Bohr model of the hydrogen atom the photon emitted in the transition from the $n=3$ to $n=1$ state has an energy of
\qquad times $13.6 \mathrm{eV}\left(\mathrm{E}_{\mathrm{o}}\right)$
A) $3 / 9$
B) $3 / 4$
C) $8 / 9$
D) 1

0

Clicker question 4

The noble gas Kr has $\mathrm{Z}=36$ and a outer electron configuration of $3 \mathrm{~d}^{10}, 4 \mathrm{~s}^{2}, 4 \mathrm{p}^{6}$. The next noble gas is $\mathrm{Xe} \mathrm{Z}=54$. The electrons to be added will be in the following subshells.
A. 4 d
B. 4 d 5 s
C. 4 d 5 s 5 p
D. 4 d 5 s 5 p 5 d

Clicker Question 1

Light from an incandescent lamp is not like laser light because it is \qquad _.
A. not monochromatic
B. not collimated
C. does not arise from stimulated emission
D. all of the above

Clicker question 3

You are designing a diode laser with a shorter wavelength to read more information in a DVD. To do this you need to use a semiconductor \qquad .
A. with a larger band gap
B. with a smaller band gap
C. with a smaller size
D. with a larger size

Clicker question 2

Suppose you had nuclei of $\quad{ }_{6}^{14} \mathrm{C}$ and wanted to release energy by forming an new nucleus. How could this be done?
A. by fusion
B. by fission
C. by separation of protons and neutrons
D. it could not be done

Clicker Question 2

The reason a laser beam is highly collimated is due to \qquad -.
A) a population inversion
B) reflection from mirrors
C) focusing by lenses
D) atomic excitations

Clicker question 4

In order to have the highest efficiency, a solar cell should have a band gap \qquad .
A) as large as possible
B) as small as possible
C) close to the average photon energy for sunlight
D) with any size

0

Clicker question 3

The amount of ${ }^{14} \mathrm{C}$ in the atmosphere is relatively constant because it is generated by a nuclear reaction. When it is fixed by incorporation plant or animal material it decays with a half life of 5730 years. This can be used to determine the age of specimens.
Suppose an ancient bone is found in which the ratio of $14 \mathrm{C} / 12 \mathrm{C}$ is $1 / 4$ that found in the atmosphere.

> About how old is the bone?
A. 3000 years B. 6000 years
C. 9000 years
D. 12000 years

Clicker question 4

Two light nuclei come together and fuse forming a larger nucleus. The mass of the product nucleus is less than the mass of the original nuclei. In this reaction \qquad
A. energy is released
B. energy is taken up
C. energy is unchanged

