8.1 Atomic Physics

Atomic Spectra

Bohr Model

Extensions of the Bohr model

X-ray emission

Electrons in Atoms

Quantum numbers

Pauli Exclusion Principle

Atomic spectra and atomic structure.

The spectra of atoms provide information about the energies of the electron in the atom.

Sharp peaks at discrete wavelengths indicate that only specified energies are allowed in the atom.

For the Hydrogen atom the Bohr theory explains the energies in a simple manner based on a quantization of angular momentum.

The quantization is explained by the de Broglie theory in terms of standing waves for the electron.

Rydberg Constant

The Balmer series could be analyzed mathematically in terms of an empirical equation.

$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$$

Rydberg Constant $R_{H} = 1.0973732x10^{7} \text{ m}^{-1}$

n = 3,4, 5 Integers larger than 2.

Disagreement with classical theory

Classical physics for the planetary model of the atom predicts that the energy of the electron can have any value - cannot explain discrete spectral lines.

The classical theory could not explain the stability of the atom, why the electron does not fall into the nucleus radiating energy.

Planetary Model of the atom

Bohr Theory

- 1. Electrons move in circular orbits.
- 2. Only specified atomic energy levels are allowed.
- 3. Energy is emitted when electron go from one energy level to another.
- 4. The orbital angular momentum of the electron is "quantized" in units of $h/2\pi = \hbar$ (called h bar)

$$L = mvr = n\hbar$$

$$n=1, 2, 3 \dots$$

h has units of angular momentum

$$mvr \Rightarrow (kg) \left(\frac{m}{s}\right) (m) \Rightarrow \frac{kg \cdot m^2}{s}$$

$$h \Rightarrow J \cdot s \Rightarrow \left(\frac{kgm^2}{s^2}\right) \cdot s \Rightarrow \frac{kg \cdot m^2}{s}$$

Angular momentum of a tennis ball What is n for the ball? $L = n\hbar$ is quantized. r= 0.5 m m = 0.1 kgv= 2 m/sL =mvr = $(0.1kg)(2m/s)(0.5m) = 0.1\frac{kgm^2}{s} = 0.1J \cdot s$ $\hbar = \frac{h}{2\pi} = \frac{6.6 \times 10^{-34} \, J \cdot s}{2\pi} = 1.05 \times 10^{-34} \, J \cdot s$ $-\frac{}{2\pi}$ $n = \frac{L}{\hbar} = \frac{0.1J \cdot s}{1.0x10^{-34} J \cdot s}$ n is so large that L appears continuous

Classical

Bohr

Energy levels are quantized (proportional to $1/n^2$) $E_n = -\frac{m_e k_e^2 e^4}{2h^2} \left(\frac{1}{n^2}\right) = -\frac{13.6}{n^2} \text{ eV}$ Emission energies $\Delta E = E_{\text{initial}} - E_{\text{final}} = 13.6 \left(\frac{1}{n_{\text{initial}}^2} - \frac{1}{n_{\text{initial}}^2}\right)$ Predicts spectral lines in the ultraviolet (Lyman series) and infrared (Paschen series), maximum energies, continuum.

Pigment molecules

beta carotene – long molecule has absorption in the visible region. The excitation energy decreases when the electron is delocalized in a long molecule.

Bohr theory

Shows that the energy levels in the hydrogen atom are quantized.

Correctly predicts the energies of the hydrogen atom (and hydrogen like atoms.)

The Bohr theory is incorrect in that it does not obey the uncertainty principle. It shows electrons in well defined orbits

Quantum mechanical theories are used to calculate the energies of electrons in atoms. (i.e. Shrödinger equation)

Extension of the Bohr Theory

Bohr theory can only be used to predict energies of Hydrogen-like atoms. (i.e. atoms with only one electron) This includes H, He $^+$, Li $^{2+}$

For example He+ (singly ionized helium has 1 electron and a nucleus with a charge of Z = +2)

For this case the energy for each state is multiplied by

$$E_{n} = -\frac{m_{e}k_{e}^{2}z^{2}e^{4}}{2\hbar^{2}}\left(\frac{1}{n^{2}}\right)$$

$$E_n = -13.6(Z^2)\frac{1}{n^2} = -13.6(2^2)\left(\frac{1}{n^2}\right) = -54.4\left(\frac{1}{n^2}\right)eV$$

for He+

Characteristic X-rays are due to emission from heavy atoms excited by electrons

A Bohr model for x-ray emission

Inner shell electrons

Energy from Bohr model

 $E_n = Z_{eff}^2 (13.6) \frac{1}{n^2}$

Z_{eff} is an effective charge of the nucleus due to screening.

Characteristic x-rays

The wavelength of characteristic x-ray peaks due to emission from high energy states of heavy atoms (high $\it Z$).

High energies due to high Zeff

$\begin{array}{c} \textbf{X-ray emission} \\ \textbf{Calculate the wavelength for } \textbf{K}_{\alpha} \textbf{ x-ray emission of Mo} \\ \textbf{(Z=+42) The electron in the L shell must be in a l=1 (p state)} \\ \textbf{L shell} \\ \textbf{n=2} \\ \textbf{K shell} \\ \textbf{Z}_{eff} = \textbf{Z-3} \\ \textbf{K shell} \\ \textbf{Z}_{eff} = \textbf{Z-1} \\ \textbf{K shell} \\ \textbf{E}_{\text{(Lahell)}} = -13.6(\textbf{Z}-3)^2 \left(\frac{1}{2^2}\right) \\ \textbf{E}_{\text{Kshell}} = -13.6(\textbf{Z}-1)^2 \left(\frac{1}{4^2}\right) \\ \textbf{73 pm} \\ \end{array}$

Electrons in atoms.

Electrons in atoms exist in discrete energy levels

The pattern of energy levels which results from a quantum mechanical rule called the Pauli Exclusion Principle. is responsible for the periodicity in the chemical properties of the different elements as seen in the Periodic Table.

Orbital angular momentum

Classically the angular momentum L of an electron moving in a circle can have any value

In quantum mechanics the values of the angular momentum are quantized and specified by a orbital angular momentum quantum no. (

For an electron with a principle quantum no. n the value of ℓ ranges from 0 to n-1.

i.e. for n=2 , ℓ can have values of 0 and 1.

Orbital magnetic quantum number

Classically an electron moving in a circle is a current which results in a magnetic dipole along the direction of L. Classically, the dipole can have any orientation with respect to a field.

In quantum mechanics, only discrete orientations are allowed. The orientation are determined by the orbital magnetic quantum no. m_I

The value of m_1 ranges from $-\ell$ to $+\ell$.

i.e. for ℓ =1, m_l can have values of -1, 0, and 1.

Spin magnetic quantum number

In quantum mechanics an electron has an intrinsic magnetic moment due to spin. The magnetic moment can have two orientations in a magnetic field determined by a spin quantum number $\rm m_{\rm s}$

$$m_s = +1/2 \text{ or } -1/2$$

for an electron 2 spin states are possible \pm 1/2

Atomic energy levels and quantum numbers.

 $\begin{array}{c} \text{range of values} \\ \text{principle quantum number n} \\ \text{angular momentum quantum number } \ell \\ \text{orbital magnetic quantum number m}_{\ell} \\ \text{spin magnetic quantum number m}_{s} \\ \end{array} \begin{array}{c} \text{range of values} \\ 1, 2, 3, \\ 0, 1 \text{ to n-1} \\ -\ell ... \text{to ..} + \ell \\ -\frac{1}{2} \cdot \text{or} + \frac{1}{2} \end{array}$

The state of an electron is specified by the set of its quantum numbers $\ \, (n,\,\ell,\,m_{_{\! l}},\,m_{_{\! s}})$

The number of states is determined by the set of possible quantum numbers.

Е	lectror	nic stat	es in a	an ator	n n=1,2	and 3	
						no.	no.
	n	1	mı	m _s	no. of states	n, I	n
	1	0	0	<u>+</u> ½	2	2	2
	2	0	0	+1/2	2	2	†
	2	1	-1	±36	2	1	8
	2	1111	0	+36	2	6	0
	2	4	4	+32	2	↓	ļ
	3	0	0	<u>+</u> ½	2	2	†
	3	1	-1	+1/2	2	 	
	3	1	0	+1/2	2	6	
	3	1	1	+1/2	2	↓	
	3	2	-2	+1/2	2	†	18
	3	2	-1	±1/2	2		18
	3	2	0	+1/2	2	10	
	3	2	1	±1/2	2		
	3	2	2	+1/2	2		

Pauli Exclusion Principle

No two electrons in an atom can have the same quantum number, n, I, $m_{\rm I}$, or $m_{\rm s}$

To form an atom with many electrons the electrons go into the lowest energy unoccupied state.

The periodic properties of the elements as shown in the Periodic Table can be explained by the Pauli Exclusion Principle by properties of filled shells.

Electrons in atoms- Shell Notation

TABLE 28.1

n	Shell Symbol	ϵ	Subshell Symbol	
1	K	0	s	
2	L	1	p	
3	M	2	d	
4	N	3	f	
5	O	4	g	
6	P	5	h	

TABLE 28.3

Shell	Subshell	Number of Electrons in Filled Subshell	Number of Electrons in Filled Shell	
K(n=1)	$s(\ell=0)$	2		
L(n=2)	$s(\ell=0) \\ p(\ell=1)$	$\left\{ \begin{array}{c} 2 \\ 6 \end{array} \right\}$	8	
M (n = 3)	$s(\ell = 0)$ $p(\ell = 1)$ $d(\ell = 2)$	$\left. egin{array}{c} 2 \\ 6 \\ 10 \end{array} \right\}$	18	
N (n = 4)	$s(\ell = 0)$ $p(\ell = 1)$ $d(\ell = 2)$ $f(\ell = 3)$	$\begin{bmatrix} 2 \\ 6 \\ 10 \\ 14 \end{bmatrix}$	32	

7

Electronic Configurations of Some Elements									
z	Symbol	Ground-State Configuration		Ionization Energy (eV)	z	Symbol	Ground-State Configuration		Ionization Energy (eV)
1	н		ls1	13,595	19	К	[Ar]	441	4.339
2	He		1,12	24.581	20	Ca		$4x^{2}$	6.111
	200	STORMON	CARCIE:	2000000	21	Sc		344x2	6.54
3	Li	[He]	2,1	5.390	22	Ti		$3d^{2}4s^{2}$	6.83
4	Be		$2s^{2}$	9.320	23	V		$3d^{3}4s^{2}$	6.74
5	В		2,3201	8.296	24	Cr		3d34s1	6.76
6	C		2+2202	11.256	25	Mn		$3d^54x^2$	7.432
7	N		2,7203	14.545	26	Fe		$3d^{6}4x^{2}$	7.87
8	O		2,2201	13.614	27	Co		$3d^{7}4s^{2}$	7.86
9	F		25220	17.418	28	N		$3d^{8}4s^{2}$	7.633
10	Ne		217200	21,559	29	Cu		$3d^{10}4s^{1}$	7.724
	5774			2.174.000	30	Zn		$3d^{10}4s^{7}$	9.391
11	Na	[Ne]	3s1	5.138	31	Ga		$3d^{10}4s^24p^1$	6.00
12	Mg		3,2	7.644	32	Ge		$3d^{10}4s^24p^2$	7.88
13	All		3x23p1	5.984	33	As		$3d^{16}4s^{2}4p^{3}$	9.81
14	Si		3,2302	8.149	34	Se		341442404	9.75
15	P		34393	10.484	35	Br		3429417405	11.84
16	S		3,230	10.357	36	Kr		34184,2466	13.996
17	cı		3,23,65	13.01					
18	Ar		$3s^23b^6$	15.755					