8.1 Atomic Physics

Atomic Spectra
Bohr Model
Extensions of the Bohr model
X-ray emission
Electrons in Atoms
Quantum numbers
Pauli Exclusion Principle

Atomic spectra and atomic structure.

The spectra of atoms provide information about the energies of the electron in the atom.
Sharp peaks at discrete wavelengths indicate that only specified energies are allowed in the atom.
For the Hydrogen atom the Bohr theory explains the energies in a simple manner based on a quantization of angular momentum.
The quantization is explained by the de Broglie theory in terms of standing waves for the electron.

Atomic Spectra

Rydberg Constant

The Balmer series could be analyzed mathematically in terms of an empirical equation.

$$
\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}}\left(\frac{1}{2^{2}}-\frac{1}{\mathrm{n}^{2}}\right)
$$

Rydberg Constant $\mathrm{R}_{\mathrm{H}}=1.0973732 \times 10^{7} \mathrm{~m}^{-1}$ $\mathrm{n}=3,4,5 \ldots \ldots \ldots . \quad$ Integers larger than 2.

Balmer series for Hydrogen

A series of peaks closer together (continuum) at low λ

Disagreement with classical theory

Classical physics for the planetary model of the atom predicts that the energy of the electron
can have any value - cannot explain discrete spectral lines.
The classical theory could not explain the stability of the atom, why the electron does not fall into the nucleus radiating energy.

Planetary Model of the atom

Bohr Theory

1. Electrons move in circular orbits.
2. Only specified atomic energy levels are allowed.
3. Energy is emitted when electron go from one energy level to another.
4. The orbital angular momentum of the electron is "quantized" in units of $\mathrm{h} / 2 \pi=\hbar$ (called h bar)

$$
\begin{aligned}
& \mathrm{L}=\mathrm{mvr}=\mathrm{n} \hbar \\
& \mathrm{n}=1,2,3 \ldots \ldots .
\end{aligned}
$$

h has units of angular momentum

$$
\left.\begin{array}{l}
\mathrm{mvr} \Rightarrow(\mathrm{~kg})\left(\frac{\mathrm{m}}{\mathrm{~s}}\right)(\mathrm{m}) \Rightarrow \frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}} \\
\mathrm{~h} \Rightarrow \mathrm{~J} \cdot \mathrm{~s} \Rightarrow\left(\frac{\mathrm{kgm}}{}{ }^{2}\right. \\
\mathrm{s}^{2}
\end{array}\right) \cdot \mathrm{s} \Rightarrow \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}} .
$$

Angular momentum of a typical electron in an atom

$\mathrm{L}=\mathrm{mvr}=\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(10^{7} \mathrm{~m} / \mathrm{s}\right)\left(0.1 \times 10^{-9} \mathrm{~m}\right)=9 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$\mathrm{n}=\frac{\mathrm{L}}{\hbar}=\frac{9 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}} \approx 9$

L is much smaller. Quantization is apparent

Bohr theory for hydrogen atom

Classical energies
any value of r is allowed

v increases as r decreases

$$
\mathrm{F}=\mathrm{ma} \Rightarrow \frac{\mathrm{k}_{\mathrm{e}} \mathrm{e}^{2}}{\mathrm{r}^{2}}=\frac{\mathrm{mv} v^{2}}{\mathrm{r}}
$$

$$
r=\frac{k_{e} e^{2}}{m v^{2}}
$$

is a function of v
but any value of r is allowed

Results from Bohr theory

Only specific values of r are allowed that depend on universal constants $n=3$

$$
r_{n}=\frac{\mathrm{n}^{2} \hbar^{2}}{\mathrm{~m}_{\mathrm{e}} \mathrm{k}_{\mathrm{e}} \mathrm{e}^{2}} \quad(\text { eliminate } \mathrm{v}) \quad \mathrm{n}=2
$$

$\mathrm{n}=1,2,3, \ldots \ldots$. integers radius increases as n^{2}

For $n=1$

$$
(1)^{2}\left(1.05 \times 10^{-34} \mathrm{Js}\right)
$$

$r_{1}=\frac{(1)^{2}\left(1.05 \times 10^{-34} \mathrm{Js}\right)}{\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(8.9 \times 10^{9} \mathrm{NmC}^{-2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}=5.3 \times 10^{-11} \mathrm{~m}$ Size of the Hydrogen atom in the ground state $\quad 0.053 \mathrm{~nm}$

Total Energies

Classical

$$
E=K E+P E=-\frac{k_{e} e^{2}}{2 r}
$$

Total energy varies as $1 / r$
Bohr

$$
E_{n}=-\frac{m_{e} k_{e}^{2} e^{4}}{2 \hbar^{2}}\left(\frac{1}{n^{2}}\right)
$$

Total energy of allowed states with $\mathrm{n}=1,2,3, \cdots---$ varies as $1 / n^{2}$

Example

Find the wavelength in the hydrogen emission spectrum for transition from $n=3$ to $n=2$.

Explanation of Bohr theory in terms

 of the de Broglie wavelength$m v r=n \frac{h}{2 \pi} \quad$ quantization of angular momentum $2 \pi r=n\left(\frac{h}{m v}\right)=n \lambda$

Quantization of angular momentum is equivalent to forming circular standing waves. (Constructive interference)

Particle in a Box (prob. 32)

A simple quantum model for a confined particle. A one-dimensional box of length L
U

potential energy $\mathrm{U}=0$ inside the box, $U=\infty$ outside the box
$\mathrm{n}=1$
A particle in a box has wave properties of a standing wave on a string fixed at both ends.

Particle in a box

Find the kinetic energy of the particle in the box
The wavelength is

$$
\lambda_{n}=\frac{2 L}{n}=\frac{h}{p_{n}}
$$

The energy is
$E_{n}=\frac{p_{n}^{2}}{2 m}=\left(\frac{n^{2} h^{2}}{4 L^{2}}\right) \frac{1}{2 m}=\frac{n^{2} h^{2}}{8 L^{2} m}$
$E_{1}=\frac{h^{2}}{8 L^{2} m} \quad \begin{aligned} & \text { The lowest energy state is not zero } \\ & \text { but gets lower for larger boxes }\end{aligned}$ but gets lower for larger boxes

Pigment molecules

beta carotene - long molecule has absorption in the visible region. The excitation energy decreases when the electron is delocalized in a long molecule.

Bohr theory

Shows that the energy levels in the hydrogen atom are quantized.

Correctly predicts the energies of the hydrogen atom (and hydrogen like atoms.)

The Bohr theory is incorrect in that it does not obey the uncertainty principle. It shows electrons in well defined orbits.

Quantum mechanical theories are used to calculate the energies of electrons in atoms. (i.e. Shrödinger equation)

Extension of the Bohr Theory

Bohr theory can only be used to predict energies of Hydrogen-like atoms. (i.e. atoms with only one electron) This includes $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+} \ldots$

For example He^{+}(singly ionized helium has 1 electron and a nucleus with a charge of $Z=+2$)
For this case the energy for each state is multiplied by $Z^{2}=4$

$$
\begin{aligned}
& E_{n}=-\frac{m_{e} k_{e}^{2} z^{2} e^{4}}{2 \hbar^{2}}\left(\frac{1}{n^{2}}\right) \\
& E_{n}=-13.6\left(Z^{2}\right) \frac{1}{n^{2}}=-13.6\left(2^{2}\right)\left(\frac{1}{n^{2}}\right)=-54.4\left(\frac{1}{n^{2}}\right) e V
\end{aligned}
$$

A Bohr model for x-ray emission

Characteristic X-rays are due to emission from heavy atoms excited by electrons

Characteristic x-rays

The wavelength of characteristic x-ray peaks due to emission from high energy states of heavy atoms (high Z).

Characteristic x-rays

Electrons in atoms.

Electrons in atoms exist in discrete energy levels
The pattern of energy levels which results from a quantum mechanical rule called the Pauli Exclusion Principle. is responsible for the periodicity in the chemical properties of the different elements as seen in the Periodic Table.

Quantum calculations show that more states
are needed to describe the electrons in an atom
$\mathrm{n}=1$

Orbital magnetic quantum number

Classically an electron moving in a circle is a current which results in a magnetic dipole along the direction of L. Classically, the dipole can have any orientation with respect to a field.
In quantum mechanics, only discrete orientations are allowed. The orientation are determined by the orbital
magnetic quantum no. m_{1}
The value of m_{1} ranges from $-\ell$ to $+\ell$.
i.e. for $\ell=1, m_{\perp}$ can have values of $-1,0$, and 1 .

Spin magnetic quantum number

In quantum mechanics an electron has an intrinsic magnetic moment due to spin. The magnetic moment can have two orientations in a magnetic field determined by a spin quantum number m_{s}

$$
m_{s}=+1 / 2 \text { or }-1 / 2
$$

for an electron 2 spin states are possible $\pm 1 / 2$

Electronic states in an atom $\mathrm{n}=1,2$ and 3

n	1	m_{1}	m_{s}	no. of states	n, l	n
1	0	0	$\pm 1 / 2$	2	2	2
2	0	0	$\pm 1 / 2$	2	2	
2	1	${ }^{-1}$	\pm	2		8
2	1	0	± 2	2	6	8
2	1	1		2		
3	0	0	$\pm 1 / 2$	2	2	
3	1	-1	$\pm 1 / 2$	2		
3	1	0	+1/2	2	6	
3	1	1	+1/2	2		
3	2	-2	+1/2	2		
3	2	-1	$\pm 1 / 2$	2		18
3	2	0	$\pm 1 / 2$	2	10	
3	2	1	+1/2	2		
3	2	2	+1/2	2		

Electrons in atoms- Shell Notation
TABLE 28.1
Shell and Subshell Notation

Electrons in atoms- Shell Notation TABLE 28.1			
Shell and Subshell Notation			
n	$\begin{aligned} & \text { Shell } \\ & \text { Symbol } \end{aligned}$	ℓ	Subshell Symbol
1	K	0	s
2	L.	1	p
3	M	2	d
4	N	3	f
5	O	4	g
6	P	5	h
\cdots		...	
-m-m			

Pauli Exclusion Principle

No two electrons in an atom can have the same quantum number, n, l, m_{1}, or m_{s}.
To form an atom with many electrons the electrons go into the lowest energy unoccupied state.

The periodic properties of the elements as shown in the Periodic Table can be explained by the Pauli Exclusion Principle by properties of filled shells.

Noble gas configurations

Noble gases have Filled Subshells

He Z=2	$1 s^{2}$							
Ne Z=10	$1 s^{2}$	$2 s^{2}$	$2 p^{6}$					
Ar Z=18	$1 s^{2}$	$2 s^{2}$	$2 p^{6}$	$3 s^{2}$	$3 p^{6}$			
Kr Z=36	$1 s^{2}$	$2 s^{2}$	$2 p^{6}$	$3 s^{2}$	$3 p^{6}$	$3 d^{10}$	$4 s^{2}$	$4 p^{6}$

Noble gases have filled subshells									
EEectronic Configurations of Some Elements									
2	Symbel	${ }_{\text {Groun }}^{\text {Confi }}$	State	Iosiration Energy (eV)	z	Symbol		madSate iguration	Ionization Energy (eV)
1	H		15^{1}	13595	19	K	[Ar]	${ }^{1}{ }^{1}$	4.399
2	He		1.2	24.581	30	Ca		$4{ }^{2}$	6.111
					21	s		$34 \mathrm{ra}^{2}$	6.5
3	Li	[He]	$2{ }^{1}$	5350	2	Ti		$34^{4} 3^{2}$	6.83
4	Be		${ }^{2}{ }^{2}$	9320	23	v		34467	6.74
5	8		2sisp ${ }^{\prime}$	8896	34	c		$4{ }^{4} 4{ }^{1}$	6.76
6	c		$20.20 p^{2}$	11.256	3	Mn		$24^{4} 4 x^{2}$	7.382
7	N		$2 x^{3} p^{3}$	1458	26	Fe		244,	787
8	o		$2 x^{3} 2 p^{4}$	13.614	27	Co		$33^{7} w^{2}$	786
9	F		2, ${ }^{2} 2 p^{3}$	17,418	\%	N		M \square^{2}	7.638
10	Ne		$20^{2} 2 \mu^{\prime \prime}$	21.580	\%	c		3-104,	7.724
					30	2		$34^{104} 3^{2}$	9.931
${ }^{11}$	Na	[Ne]	${ }^{3}$	5.188	31	G			690
12	Mg		$3{ }^{2}$	2.64	32	G		$44^{146} 44^{2} 4 p^{2}$	788
13	$\stackrel{1}{ }$		$3{ }^{2} 3 \mathrm{p}^{\prime}$	5.984	35	As		$14^{14} 44^{2} 4 p^{3}$	988
14	5		$3.73)^{2}$	8.19	34	5		$24{ }^{14} 4^{2}+p^{4}$	9.75
15	P		$3{ }^{3}+3 \mathrm{~s}^{3}$	10.484	38	R		$44^{14} 44^{2} 4 p^{3}$	1184
16	s		$33^{23} p^{\prime}$	10.357	36	Kr		$14^{\prime \prime} 4{ }^{2} 44^{4}$	13.906
17	$\underline{\square}$		$33^{2} 3 p^{3}$	13.01					
18	Ar		$3{ }^{2} 3 p^{5}$	15.735					
Filled subshell configuration $\mathrm{s}^{2}, \mathrm{p}^{6}, \mathrm{~d}^{10}$									

