6.1 Quantum Physics. Particle Nature of Light

- Particle nature of Light Blackbody Radiation Photoelectric Effect
- Properties of photons lonizing radiation Radiation damage
- x-rays
 Compton effect
 X-ray diffraction

Photons

When light exchanges energy with atoms it behaves as a particle - called the photon

The energy of a photon is proportional to the frequency f of light

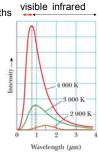
$$E_{photon} = hf$$

Planck's Constant h=6.626x10-34 J·s

Thermal Radiation Blackbody radiation

A container at temperature T in equilibrium with electromagnetic radiation. Light is absorbed and emitted by the walls. At equilibrium the spectrum of the light only depends on the temperature.

Spectrum of Blackbody radiation


A wide spectrum of wavelengths is produced.

The total intensity increases with temperature

The peak wavelength decreases with temperature Wien's displacement law

 λ_{max} T= 0.2898x10⁻²mK

The intensity goes down at low wavelengths (I->0, as λ -> 0)

Demonstration of blackbody radiation

A tungsten filament light bulb is approximately a black body radiator.

http://www.physics.ucla.edu/demoweb/demomanual/astronomy/quantum_mechanics/blackbody_radiation.html

Disagreement with classical theory of light

The classical theory predicts that intensity continues to increase with decreasing wavelength.

"Ultraviolet Catastrophe"

To explain the experimental data Planck proposed the quantum hypothesis.

Classical theory
Experimental data

Wavelength

toppin from

Planck's constant

Planck proposed that light could only have certain energies

E=hf

Then the energy of oscillators in the black body could only have certain fixed values

4 000 K

2 000 K

Max Planck

Classical and Planck picture

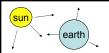
Suppose we have a box that contains light waves with different wavelengths. The energy is contained in energy states containing particles with different energies

Classical theory predicts that the number of energy states (like standing waves) increased with decreasing wavelength

Planck proposed that in addition the short wavelength particles are more "energetically expensive"

So at short wavelength, they would be hard to produce. This explains the peak in the black body spectrum

Quantum explanation for the Wein Effect.


•The blackbody spectrum reflects the distribution of photon energies.

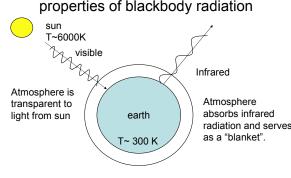
•The peak wavelength reflects the average energy.

•The average photon energy increases linearly with temperature

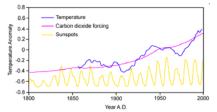
$$\text{from} \quad \lambda_{\text{max}} T = \text{constant}$$

 $\label{eq:then_T} \text{then T} \propto \frac{1}{\lambda_{\text{max}}} \propto \frac{hf_{\text{max}}}{c} \propto \begin{array}{l} \text{Average} \\ \text{photon energy} \end{array}$ Wavelength (µm)

Question

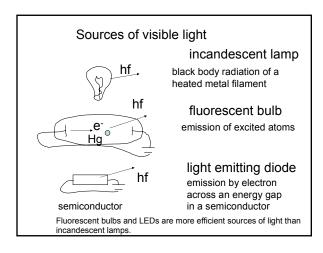

The sun has a surface temperature of 5,800 K. The solar radiation has a peak wavelength of 500 nm. The earth has temperature of about 300 K. What is the maximum wavelength of the blackbody spectrum of the earth?

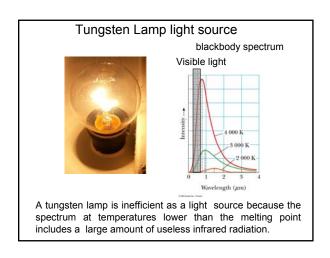
> $\lambda_{\text{max}}T = constant$ Wein Law

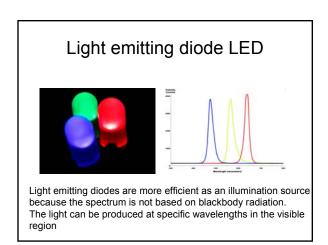

$$\begin{split} \lambda_{max}^{earth} T^{earth} &= \lambda_{max}^{sun} T^{sun} \\ \lambda_{max}^{earth} &= \frac{\lambda_{max}^{sun} T^{sun}}{T^{earth}} &= \frac{500 \text{x} 10^{-9} \text{m} (5800 \text{K})}{300 \text{K}} = 9.7 \text{x} 10^{-6} \text{m} \end{split}$$

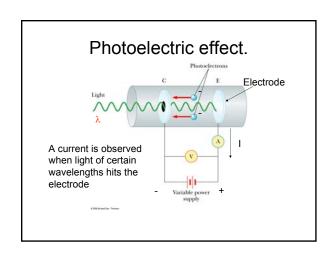
10micrometers infrared region

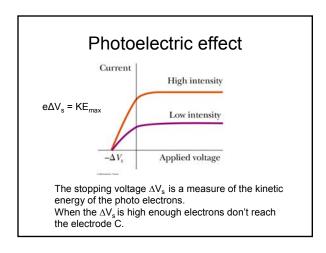
The "Greenhouse Effect" is based on properties of blackbody radiation

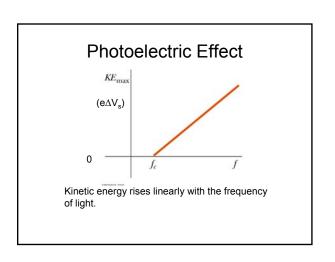


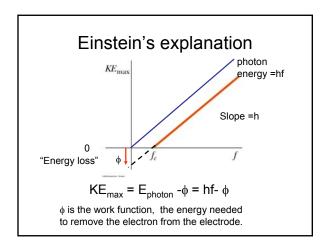


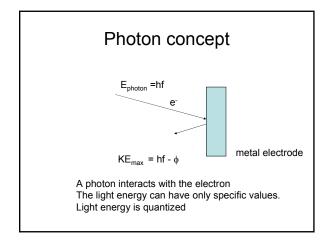



Graph showing that the observed temperature rise can easily result from the observed rise of ${\rm CO}_2$, based on simple numerical experiment. (Smoothed temperature data in Jones et al., 1998; CO₂ forcing data from CO₂ history, and calculated expected rise in temperature assuming 2 degree Celsius rise for CO₂ doubling; sunspot abundance from J.Lean, NASA)


http://earthguide.ucsd.edu/globalchange/global_warming/03.html







Properties of Photons

Photon energies - Interactions of light with matter.

Ionizing radiation

Radiation damage

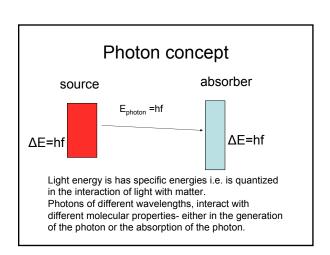
x-rays

Compton effect

X-ray diffraction

Photon Energy

Find the energy of a photon with a wavelength of 500 nm. Use units of electron volts (1eV= 1.60x10⁻¹⁹ J)


$$E = hf = h\frac{c}{\lambda} \ = 6.63 x 10^{-34} Js \Biggl(\frac{3x 10^8 m/s}{500 x 10^{-9} m} \Biggr) = 4.0 x 10^{-19} J$$

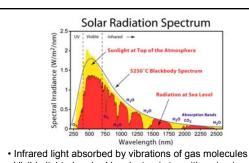
$$E = \frac{4x10^{-19} J}{1.6x10^{-19} J/eV} = 2.5eV$$

An electron volt is the energy change in moving an electron across a potential of 1 volt.

A few electron volts is the energy of electrons in molecules. This is why visible light is absorbed by molecules (pigment molecules).

Photon Energies				
light	Typical Wavelength (m)	Typical Photon energy (eV)	Molecular interactions	applications
radio	10	10-7 eV	nuclear magnetic	NMR imaging
microwaves	10-2	10 ⁻⁴ eV	Molecular rotations	Microwave oven cell phone
Infrared	10-5	10 ⁻¹ eV	Molecular vibrations	Heat lamp
Visible	400-700 nm	2-3 eV	Low energy electrons (pigments)	Vision Photosynthesis Photography
Ultraviolet	200-300 nm	4-5 eV	bonding electrons	Radiation damage Skin cancer
X-rays	1 nm	10 ⁴ eV	Electrons scattering, tightly bound electrons	X-ray imaging X-ray diffraction

Microwave Oven


f=10GHz

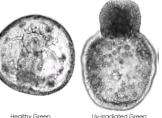
 $hf = 4x10^{-5} eV$

Heats by exciting molecular rotations and vibrations.

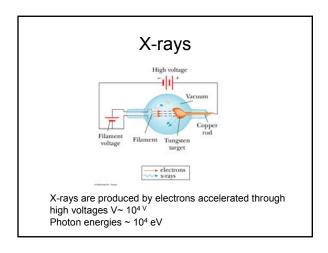
Cell phones use the same frequency range but at much lower intensity.

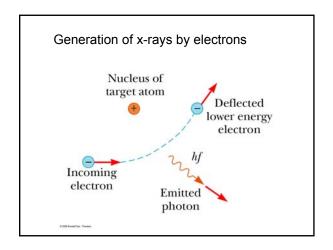
- Visible light absorbed by electronic transitions in pigment
 UV radiation 4-5 eV photons cause radiation damage by altering DNA (UV-B radiation at 320-290 nm)
- Ozone in the atmosphere protects by absorbing UV radiation.

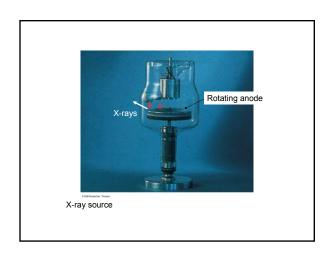
UV light damage to inkjet prints

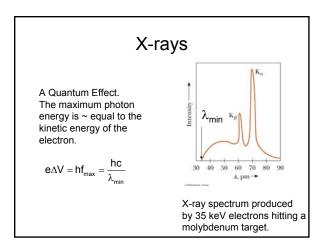


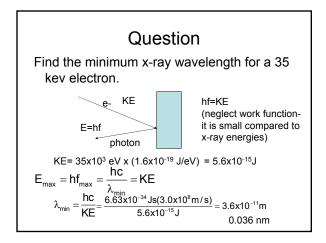
UV light treated

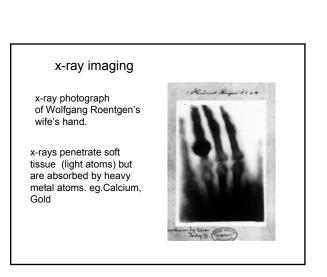

Uv protected

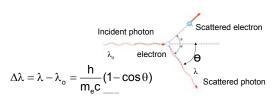

Radiation damage to DNA **UV** light Altered DNA


Biological effects of uv radiation



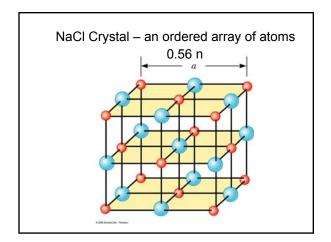

Organisms living in shallow sea water are susceptible to increased uv radiation.

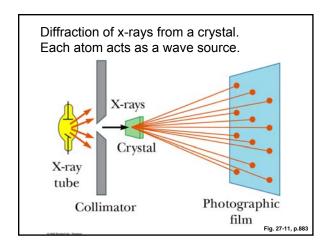


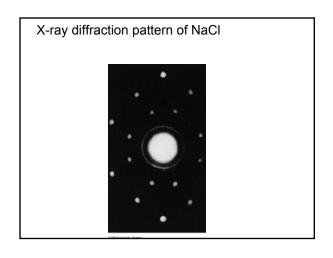


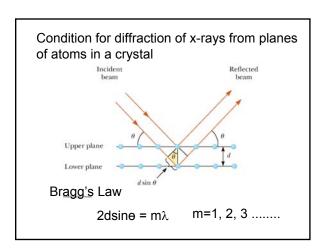
Compton scattering of x-rays.

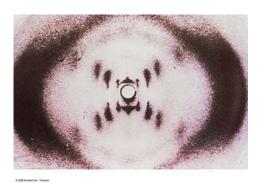
High energy photons knock electrons out of atoms

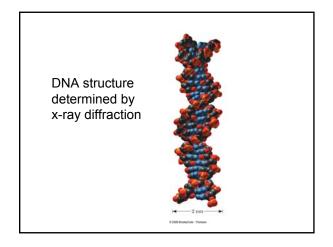

The wavelength of a photon scattered from an electron is increased due to loss of photon energy.




Lower energy -> Longer wavelength


X-ray diffraction


- X-rays have wavelengths close to atomic dimensions
- Crystalline solids have an ordered array of atoms that scatter x-rays much like a three-dimensional diffraction grating
- The x-ray diffraction pattern from crystals of molecules can be used to determine the density of scattering electrons (i.e. the electron density) and thus the molecular structure.



X-ray diffraction pattern from a crystalline fiber of DNA. Watson And Crick used this data to deduce the structure of the DNA molecule

