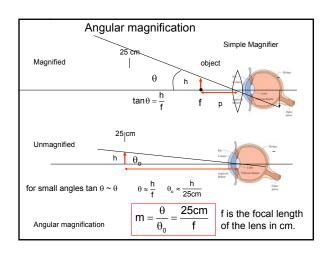

5.1 Optical Instruments - Polarization

- · Optical Instruments
 - Simple magnifier
 - Compound microscope
 - Telescope
- · Wave optics
 - -Polarization

Magnifiers

- We magnify the image a small object by bringing it close to our eye.
- But we cannot bring it closer than the near point.
- A magnifier can produce a larger image of the object at the near point (or farther away) that can be focused on by the eye.
- The larger image is due to Angular Magnification



Angular Magnification The angular magnification is the ratio of θ for the magnified image compared to value of θ_0 for the object at the near point of the eye. (25 cm) Magnified h' virtual image Object Ob

Angular magnification

The angular magnification for the simple magnifier can have a range of values because the focal length of the eye can vary due to accommodation.

The simplest case is the magnification for the relaxed eye. (focused at infinity)

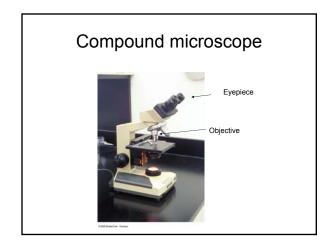
Simple magnifier.

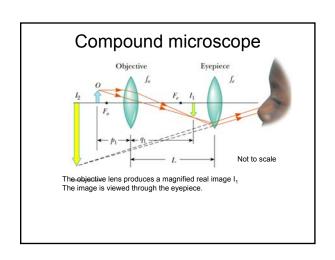
A simple magnifier with a focal length of 5.0 cm is used to view an insect. What is the angular magnification for a relaxed eye?

$$m = \frac{25cm}{f} = \frac{25cm}{5.0cm} = 5.0$$

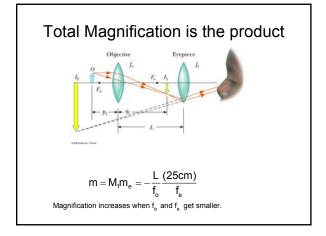
Simple magnifiers.

The angular magnification for a single lens is limited by aberration to about 4. Combination lenses can have magnification to about 20.


Compound Microscopes.


Magnification by 2 lenses.

Objective lens – Produces an enlarged real image of the object.

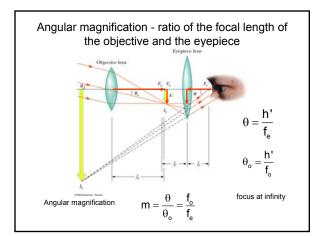

Eyepiece – Used like a simple magnifier to view the image.

The net angular magnification of the product of the two magnifications.

Two stages of magnification by 1) objective and 2) eyepiece. $\begin{array}{c} Objective \\ \hline P_0 \\ \hline P_0 \\ \hline \end{array}$ Not to scale $\begin{array}{c} Eyepiece \\ \hline P_0 \\ \hline \end{array}$ Not to scale $\begin{array}{c} The \ objective \ lens \ produces \ a \ magnified \ real \ image \ l_1 \\ \hline The \ image \ is \ viewed \ through \ the \ eyepiece. \\ \hline M_o = -\frac{q_1}{p_1} \approx -\frac{L}{f_o} \\ \hline \end{array}$ $\begin{array}{c} m_e = \frac{25cm}{f_e} \\ \hline \end{array}$ For relaxed eye

Magnification

A compound microscope has an objective lens and eyepiece with a focal lengths of 1.5 cm and 2.0 cm respectively. The microscope is 20 cm long. Find the angular magnification


$$m = -\frac{L}{f_o} \frac{(25cm)}{f_e} = -\frac{20}{1.5} \frac{(25cm)}{2.0} = -167$$

Refracting Telescope

Two lenses

Objective lens – produces a reduced image of a distant object near the focal point.

Eyepiece – used to magnify the image.

Telescope

The Hubble space telescope has an objective mirror with a focal length of 57.8 m viewed with optics equivalent to an eyepiece with a focal length of 7.2x10⁻³m What is the angular magnification?

$$m = \frac{f_o}{f_e} = \frac{57.8}{7.2x10^{-3}} = 8.0x10^3$$

Hubble Telescope Image of M100 Spiral Galaxy (NASA)

Limits to magnification

- For refracting optics there are problems of chromatic and spherical aberration.
- Problems in precision in constructing the refracting and reflecting surfaces.
- Diffraction A basic problems having to do with the wave nature of light (discussed next week)

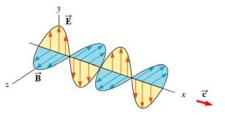
Polarization

Polarized Light
Polarization by absorption
Polarization by reflection
Polarization by scattering

Wave Properties of Light

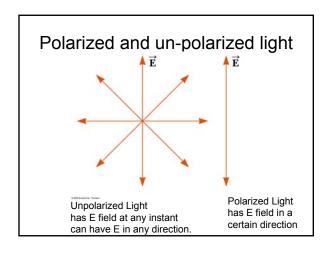
Wave optics or Physical optics is the study of the wave properties of light.

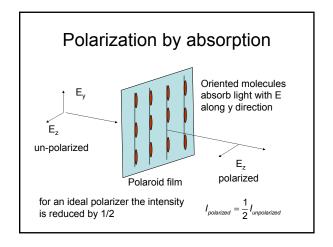
Some wave properties are:

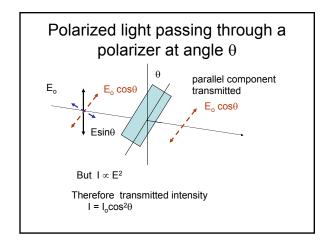

Interference, diffraction, and polarization.

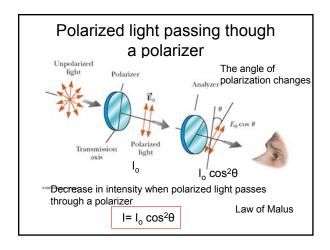
These properties have useful applications in optical devices such as compact discs, diffraction gratings, polarizers.

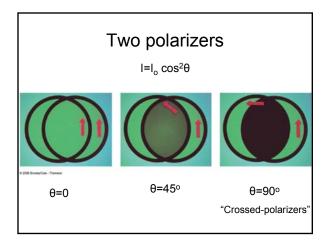
Polarization

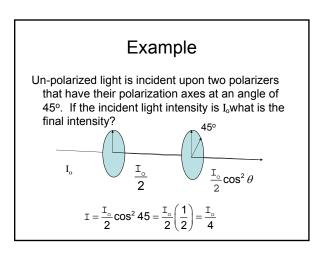

- Polarized light has it E field along one direction.
- Light can be polarized by several different processes
 - Absorption Polaroid filter
 - Reflection Brewster's angle
 - Scattering Light from the sky
- · Polarized light has many applications
 - Polaroid sunglasses, Polarization microscopy, liquid crystal display.

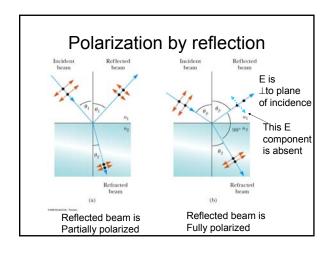

Light is a transverse wave

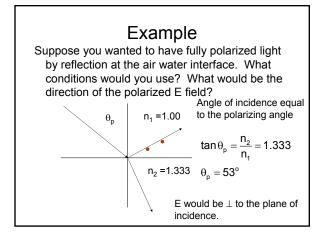


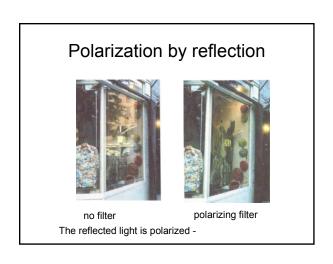

A plane wave with Electric field in the y direction

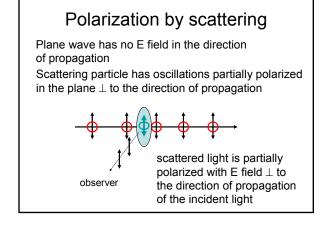

There is no E field in the direction of propagation

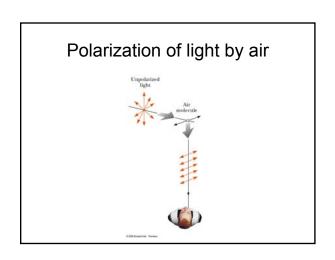











Polarization by reflection Un-polarized light can be polarized by reflection at a specific polarization angle θ_p (Brewster's angle) Un-polarized θ_p Fully polarized n_1 n_2 n_2 n_2 n_3 n_4 n_4 n_5 n_4 n_5 n_5 n_5 n_5 n_6 n_7 n_8 n_9 n

