

Object-Image

- A physical object is usually observed by reflected light that diverges from the object.
- An optical system (mirrors or lenses) can produce an image of the object by redirecting the light.
- Real Image
- Virtual Image

Image formed by a plane mirror.

Each point on the image can be determined by tracing 2 rays from the object.

A virtual image is formed by a plane mirror at a distance q behind the mirror.

$$
q=-p
$$

Parabolic Reflector

Parabolic mirrors can be used to focus incoming parallel rays to a small area or to direct rays diverging from a small area into parallel rays.

Spherical mirrors

-Spherical mirrors are much easier to fabricate than parabolic mirrors

- A spherical mirror is an approximation of a parabolic mirror for small curvatures. (i.e. for paraxial rays -close to parallel to the optic axis.
- Spherical mirrors can be convex or concave

concave
convex

Parallel beams focus at the focal point of a Concave Mirror.

The position of the image can be determined from two rays from the object.

[^0]

Simulation of image formation by a mirror
http://qbx6.Itu.edu/s_schneider/physlets/main/opticsbench.shtml

PHYSLETS were developed at Davidson University by Wolfgang Christian

Question

Describe how your image would appear as you approach a convex mirror?

Magnification

q-positive - image is real
M is negative - the image is inverted.

Image formed by refraction

- Light rays are deflected by refraction through media with different refractive indexes.
- An image is formed by refraction across flat or curved interfaces and by passage through lenses.

Image formed by refraction through a refracting surface.

Real image formed by refraction.

Converging Lenses

Fatter in the middle.
Cause light to converge toward the optic axis

Diverging Lenses

Thinner in the middle
Cause light to diverge away from the optic axis

Ray tracing for lenses

- A line parallel to the lens axis passes through the focal point
- A line through the center of the lens passes through undeflected.

Question

How will an object viewed through a converging lens appear as the lens is brought closer to the object?

Parallel light though a diverging lens appears to go through the focal point.

A virtual image is formed.

A Diverging lens always forms a virtual image

Question

How will the image of an object formed by a diverging lens change as the lens is brought closer to the object?

Thin lens equation.

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{f}
$$

p and q are positive along the path of light p is positive for real objects f is positive for converging lenses f is negative for diverging lenses q is positive for real images q is negative for virtual images.

Example

An object is placed 30 cm in front of a converging lens with focal length 10 cm . Find the object distance and magnification.

Example

An object is placed 30 cm in front of a converging lens with focal length 10 cm . Find the object distance
and magnification.

Ray diagram.
$\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$
$\frac{1}{q}=\frac{1}{f}-\frac{1}{p}$
$q=\frac{f p}{p-f}=\frac{(10)(30)}{30-10}=15 \mathrm{~cm}$

$$
M=-\frac{q}{p}=-\frac{15}{30}=-0.5 \quad \begin{array}{ll}
\text { Inverted } \\
\text { Reduced }
\end{array}
$$

Example

An object is placed 30 cm in front of a diverging lens with a focal length of -10 cm . Find the image distance and magnification
$\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$
$\frac{1}{q}=\frac{1}{f}-\frac{1}{p}$
$\mathrm{q}=\frac{\mathrm{fp}}{\mathrm{p}-\mathrm{f}}=\frac{(-10)(30)}{30-(-10)}=-7.5 \mathrm{~cm}$
30 cm
$M=-\frac{q}{p}=-\frac{-7.5}{30}=0.25 \quad \begin{aligned} & \text { Upright image } \\ & \text { reduced }\end{aligned}$
reduced

[^0]: When object distance > C
 The image is real, inverted, reduced

