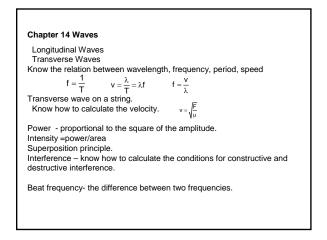
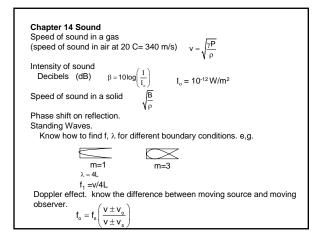
10.2 Review and Overview Energy Problem

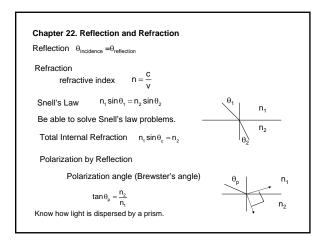
Final Exam

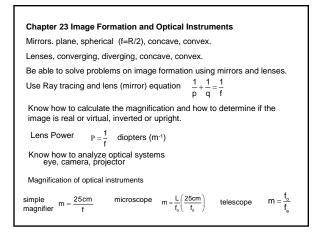
- Tue June 8 from11:30am-2:29pm York 2722
- Will cover all the course material including the last week
- 25 questions -multiple choice.
- You are allowed to bring 3 sheets of paper with equations on both sides, scratch paper for calculation, calculator
- You must bring a scantron form and a picture id.

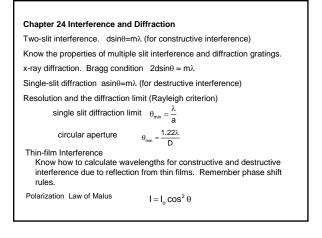
Additional resources

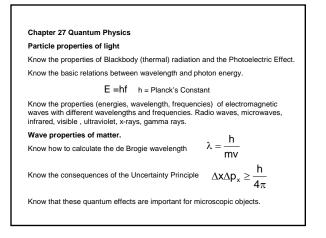

I will have extended office hrs. Mayer 4517. Thu Fri Mon 2-4 pm.

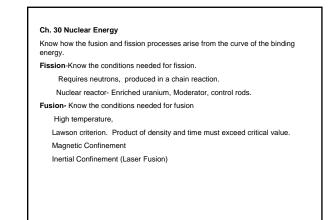

You can ask me questions by email mokamura@ucsd.edu The clicker question will be placed online.

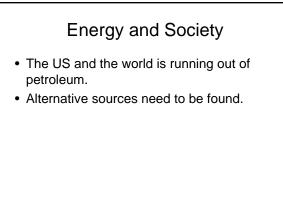

Preparing for the final exam

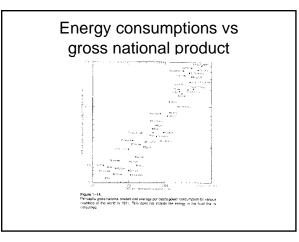

- Review previous quizzes. Find what you did wrong and learn to correct your errors.
- Go over homework and clicker questions. Make sure you understand the basic ideas not only the numerical solutions.

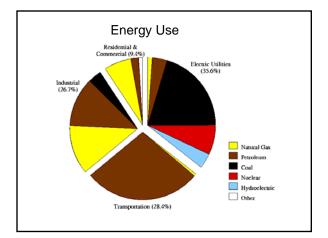

Know the relations betw motion	een displacement	t and time for simple harmonic
Harmonic oscillators		
Displacement y=	=Acos(ωt) $f = \frac{1}{\pi}$	$\omega = 2\pi f$
Know how the frequenc	y depends on prop	perties of the system.
	y depends on prop	perties of the system.
Mass on a spring	$\omega = \sqrt{\frac{k}{m}}$	
	V <i>m</i>	
	$\omega = \sqrt{\frac{g}{L}}$	
Pendulum		

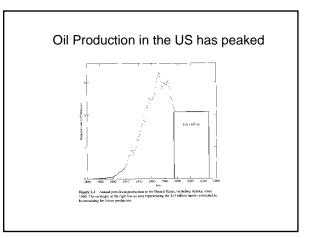


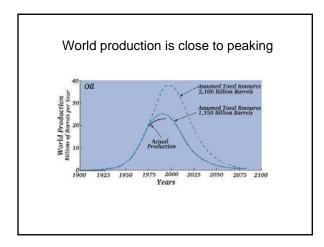


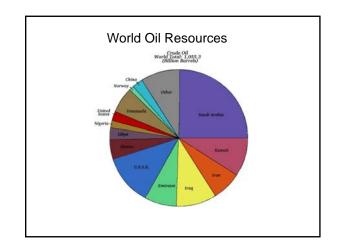





Ch. 29 Nuclear Physics Know the properties of nuclei, size, composition. Binding energies. Know how to calculate this from the mass of atoms. E=mc² Know the curve of the binding energy. How it arise from the competition between nuclear and electrostatic forces. Why it goes through a maximum. Radioactive decay. $T_{1/2} = \frac{0.693}{1}$ $N = N_o e^{-\lambda t} = N_o \left(\frac{1}{2}\right)^{-\frac{t}{T_{1/2}}}$ Radioactivity Know the properties of alpha particles, beta particles and gamma rays. Applications of Nuclear Physics Radiation Damage


Imaging





Alternatives to oil
Coal
Nuclear Energy
Fission
Fusion
Hydroelectric
Wind
Solar
Biomass

Nuclear Energy-Fission

Uranium -> fission produces + energy

- Problem with radioactive waste disposal.
- Release of radioactivity by accidents or terrorist attack
- With the current fuel cycle uranium would be depleted in ~150 years.
- Breeder reactor technology may increase this time.

Nuclear energy-Fusion

$^{2}H+ ^{3}H -> ^{4}He + n+ energy$

- Power plants using nuclear fusion have not been built.
- Severe problems in attaining the conditions for fusion. High temperatures, high density of fuel, isotopes of hydrogen.
- Although the fuel source is almost unlimited, the technology is uncertain.

Hydroelectric

- This is a efficient clean source of energy
- However most of the easily available dam sites have already been used.
- Not much more room for expansion

Wind Energy

- Windmills are now producing electricity at competitive prices in selected locations
- The energy densities are roughly comparable to solar energy.
- Wind energy will be a more important source in the future.

Solar Energy

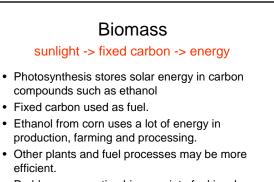
- The amount of energy from the sun is large 2x10¹⁷ W, incident
- The average power density is low about 100-300 W/m^2
- Large areas must be covered.
- Collection costs must be cheap.

Photovoltaic

light -> electrical energy

- Current silicon solar cells are commercially available.
- The costs for the are often subsidized by government to make solar energy competitive.
- Newer technologies (nano-particle, nonsilicon) may reduce the costs further.

Value of solar energy produced by a solar cell (1m²)


Estimate

light intensity – 1000 W/m² (3hr/day) efficiency of solar collector 20% cost per kwhr \$0.15 lifetime of the solar collector 20 yr.

Value of Energy = $1.0kW(0.2)(\frac{3hr}{day})(\frac{365day}{yr})(20yr)(\frac{\$0.15}{kwhr})$

= \$700/m²

Cost of solar panels is in the range $500-1000/m^2$ (uninstalled.)

• Problem - converting biomass into fuel involves complex processing.

Summary

- Finding sources of energy will be a major concern in the near future.
- Alternative technologies and resources will need to be developed.
- Future generations of scientists and engineers will be at the forefront of this development.
- Hopefully the lessons that you learned in Physics will help you understand and contribute to solving these problems.