1.2 Waves

- Wave properties
 - speed
 - wavelength
 - -Superposition of waves
- Reflection of waves at an interfaceWave on a string
- -Speed of wave on a string
- Sound waves
 - Sound Frequencies
 - -Speed of Sound
 - -Intensity of Sound Waves

Waves A disturbance that carries energy Mechanical Waves- water wave, sound – must propagate through matter. Electromagnetic Waves – radio, x-ray, light – can propagate through a vacuum.

Examples

- Transverse waves
 - Transverse wave on a string
 - Electromagnetic waves (speed = 3.00x10⁸ m/s)
- · Longitudinal waves
 - Sound waves in air (speed = 340 m/s)

Reflection and Transmission.

- When a wave reaches a boundary, part of the wave is reflected and part of the wave is transmitted.
- The amount reflected and transmitted depends on how well the media is matched at the boundary.
- The sign of the reflected wave depends on the "resistance" at the boundary.

	TABLE 14.1		
	Speeds of Sound in Various Media		
_	Medium	v (m/s)	
$\mathbf{V} = \sqrt{\frac{\mathbf{B}}{\rho}}$	Gases		
	Air $(0^{\circ}C)$	331	
	Air (100°C)	386	
	Hydrogen (0°C)	1 290	
	Oxygen (0°C)	317	
	Helium (0°C)	972	
Why is the speed of	Liquids at 25°C		
	Water	1 490	
	Methyl alcohol	1 140	
in air?	Sea water	1 530	
y is the speed of	Solids		
nd higher in water	Aluminum	5 100	
than in air?	Copper	3 560	
	Iron	5 130	
	Lead	1 320	
	Vulcanized rubber	54	

Example
The maximum sensitivity of the human ear is for a
frequency of about 3 kHz. What is the wavelength of
the sound at this frequency?

$$\lambda = \frac{V}{f} = \frac{340m/s}{3x10^3 Hz} = 0.11m = 11cm$$

The ear is capable of distinguishing a wide range of sound intensities.	TABLE 14.2		
	Intensity Levels in Decibels for Different Sources		
	Source of Sound	$\beta(dB)$	
	Nearby jet airplane	150	
	Jackhammer, machine gun	130	
	Siren, rock concert	120	
	Subway, power mower	100	
	Busy traffic	80	
	Vacuum cleaner	70	
	Normal conversation	50	
	Mosquito buzzing	40	
	Whisper	30	
	Rustling leaves	10	
	Threshold of hearing	0	

high as 120 dB (1W/m²⁾

Say the area is about 1cm^{2.}

$$P = IA = 1w/m^2(10^{-4}m^2) = 10^{-4}W$$

A small amount of power produces a high intensity.

Suppose you are standing near a loudspeaker that can is blasting away with 100 W of audio power. How far away from the speaker should you stand if you want to hear a sound level of 120 dB. (assume that the sound is emitted uniformly in all directions.)

$$I = \frac{P}{A} = \frac{P}{4\pi r^2}$$
$$r = \sqrt{\frac{P}{4\pi l}} = \sqrt{\frac{100W}{4\pi (1W/m^2)}} = 2.8m$$