1.2 Waves

-Wave properties

- speed
- wavelength
-Superposition of waves
- Reflection of waves at an interface
- Wave on a string
-Speed of wave on a string
- Sound waves
- Sound Frequencies
-Speed of Sound
-Intensity of Sound Waves

Waves

- A disturbance that carries energy
- Mechanical Waves- water wave, sound must propagate through matter.
- Electromagnetic Waves - radio, x-ray, light - can propagate through a vacuum.

- Transverse waves
- Transverse wave on a string
- Electromagnetic waves (speed $=3.00 \times 10^{8}$ m / s)
- Longitudinal waves
- Sound waves in air (speed $=340 \mathrm{~m} / \mathrm{s}$)

Examples

Seismograph record after an earthquake.

P S

Wavelength - Spatial Period

Wave travels distance λ during one period T

Simple Harmonic Waves

Periodic displacement vs distance

Wave velocity

Example

A radio station transmits at a frequency of 100 MHz . Find the wavelength of the electromagnetic waves. (speed of light $=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

$$
\begin{aligned}
& v=\lambda f \\
& \lambda=\frac{v}{f}=\frac{3.0 \times 10^{8}}{100 \times 10^{6}}=3.0 \mathrm{~m}
\end{aligned}
$$

Transverse wave on a string

Transverse wave simulation

transverse wave simulation
http://www.surendranath.org/applets/waves/tw ave01a/twave01aapplet.html

For a transverse wave each segment undergoes simple harmonic motion.

Superposition Principle

- When two waves overlap in space the displacement of the wave is the sum of the individual displacements.

Example

A transverse wave with a speed of $50 \mathrm{~m} / \mathrm{s}$ is to be produced on a stretched spring. If the string has a length of 5.0 m and a mass of 0.060 kg , what tension on the string is required.

$$
\begin{aligned}
& v=\sqrt{\frac{F}{m / L}} \\
& F=\frac{v^{2} m}{L} \quad=\frac{(50 \mathrm{~m} / \mathrm{s})^{2}(0.060 \mathrm{~kg})}{5.0 \mathrm{~m}}=30 \mathrm{~N}
\end{aligned}
$$

Interference

- Superposition of harmonic waves depends on the relative phase of the two waves
- Can lead to
- Constructive Interference
- Destructive Interference

Constructive Interference

Wave 1

Wave 2

Superposition
The two waves have the same phase

Destructive Interference

Wave 1

(a)

Wave 2

The two waves are out of phase (by 180°, or π)

Reflection and Transmission.

- When a wave reaches a boundary, part of the wave is reflected and part of the wave is transmitted.
- The amount reflected and transmitted depends on how well the media is matched at the boundary.
- The sign of the reflected wave depends on the "resistance" at the boundary.

Mis-match at the boundary
part of the wave will be reflected at the boundary
\qquad

Boundary

$v=\sqrt{\frac{B}{\rho}}$	TABLE 14.1	
	Speeds of Sound in Various Media	
	Medium	$v(\mathrm{~m} / \mathrm{s})$
	Gases	
	Air $\left(0^{\circ} \mathrm{C}\right)$ Air $\left(100{ }^{\circ} \mathrm{C}\right)$	331 386
	Air $\left(1000^{\circ} \mathrm{C}\right.$ Hydrogen $\left(0^{\circ} \mathrm{C}\right)$	386 1290
	Oxygen ($0^{\circ} \mathrm{C}$)	317
	Helium ($0^{\circ} \mathrm{C}$)	972
Why is the speed of sound higher in Helium than in air? Why is the speed of sound higher in water than in air?	Liquids at $25^{\circ} \mathrm{C}$	
	Water	1490 1140
	Sea water	1530
	Solids	
	Aluminum	5100
	Copper	3560
	Iron	5130
	Lead	1320
	Vulcanized rubber	54

Find the speed of sound in air at $20^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& v=331 \sqrt{\frac{T}{273}} \\
& v=331 \sqrt{\frac{273+20}{273}}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Speed of sound in air

$$
v=\sqrt{\frac{\gamma P}{\rho}}
$$

γ is a constant that depends on the nature of the gas $\gamma=7 / 5$ for air.

P - Pressure
ρ - Density
Since P is proportional to the absolute temperature T by the ideal gas law. $\quad P V=n R T$
v is dependent on $T \quad v=331 \sqrt{\frac{T}{273}} \quad(\mathrm{~m} / \mathrm{s})$

Example

You are standing on one side of a canyon and shout. You hear your echo 3.0 s later. How wide is the canyon? $\left(v_{\text {sound }}=340\right.$ m / s)

Example

The maximum sensitivity of the human ear is for a frequency of about 3 kHz . What is the wavelength of the sound at this frequency?

$$
\lambda=\frac{v}{f}=\frac{340 \mathrm{~m} / \mathrm{s}}{3 \times 10^{3} \mathrm{~Hz}}=0.11 \mathrm{~m}=11 \mathrm{~cm}
$$

Energy and Intensity of sound waves
 power $P=\frac{\text { energy }}{\text { time }}$

Intensity $\quad I=\frac{\text { power }}{\text { area }}=\frac{P}{A} \quad\left(\right.$ units $\left.\mathrm{W} / \mathrm{m}^{2}\right)$

Sound intensity level

$$
\begin{aligned}
& \beta=10 \log \left(\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{o}}}\right) \quad \text { decibels }(\mathrm{dB}) \\
& \mathrm{I}_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2} \quad \text { the threshold of hearing }
\end{aligned}
$$

decibel is a logarithmic unit. It covers a wide range of intensities.

TABLE 14.2
The ear is capable of distinguishing a wide range of sound intensities. for Different Sources

Intensity Levels in Decibels

Source of Sound	$\boldsymbol{\beta}(\mathrm{dB})$
Nearby jet airplane	150

Jackhammer, machine $\quad 130$
gun
Siren, rock concert 120
Subway, power mower 100
Busy traffic
Vacuum cleaner
Normal conversation
Mosquito buzzing
Whisper
Rustling leaves
Threshold of hearing 10
smaticon-m

Question

> What is the intensity of sound at a rock concert? $\left(\mathrm{W} / \mathrm{m}^{2}\right)$
> $\beta=10 \log \left(\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{o}}}\right)=120$
> $\log \left(\frac{\mathrm{I}}{\mathrm{I}_{0}}\right)=\frac{120}{10}=12$
> $\frac{\mathrm{I}}{\mathrm{I}_{0}}=10^{12}$
$\mathrm{I}=10^{12} \mathrm{I}_{0}=10^{12} \cdot 10^{-12}=1 \mathrm{~W} / \mathrm{m}^{2}$

The sound intensity of an ipod earphone can cause damage to the ear. How is this possible?

The earphone is placed directly in the ear. The intensity at the earphone is the power divided by a small area can be a high as $120 \mathrm{~dB}\left(1 \mathrm{~W} / \mathrm{m}^{2}\right)$

Say the area is about $1 \mathrm{~cm}^{2}$.

$$
P=I A=1 \mathrm{w} / \mathrm{m}^{2}\left(10^{-4} \mathrm{~m}^{2}\right)=10^{-4} \mathrm{~W}
$$

A small amount of power produces a high intensity.

Suppose you are standing near a loudspeaker that can is blasting away with 100 W of audio power. How far away from the speaker should you stand if you want to hear a sound level of 120 dB . (assume that the sound is emitted uniformly in all directions.)

$$
\begin{gathered}
I=\frac{P}{A}=\frac{P}{4 \pi r^{2}} \\
r=\sqrt{\frac{P}{4 \pi l}}=\sqrt{\frac{100 W}{4 \pi\left(1 \mathrm{~W} / \mathrm{m}^{2}\right)}}=2.8 \mathrm{~m}
\end{gathered}
$$

