

Instructor: Melvin Okamura email: mokamura@physics.ucsd.edu

Course Information

Course Syllabus on the web page http://physics.ucsd.edu/students/courses/spring2010/physics1c

Instructor: Mel Okamura – <u>mokamura@physics.ucsd.edu</u> Office: 4517Mayer Hall Addition Office Hrs. Wed 2-3 pm or by appointment

TA: Parit Agarwal Office: TBA Office Hrs: TBA

Text. Physics 1 Serway and Faughn, 7^{th} edition, UCSD custom edition. Volume 1 and Volume 2

Class Schedule

Lectures

- Tu, Thu. 11:00-12:20 pm York Hall 2722
- Quizzes – Third Thu (see schedule)
 - 11:00-12:200 pm York Hall 2722
- Problem Session - Wed. 8:00-9:50 York 2622

Grades

- Quizzes (3) will be held on Thu as scheduled. You are allowed to drop 1 quizzes. There will be no make-up quizzes.
- Final exam covering the whole course.
- The final grade will be based on Quizzes 60% (best 2 out of 3 quizzes) Final exam 40% Extra credit 5% (clicker responses)

Homework

- Homework will be assigned each week.
- Homework will not be graded but quiz questions will resemble the homework.
- Solutions to the homework problems will be posted on the web page.

Laboratory

• The laboratory is a separate class which will be taught by Professor Anderson.

Waves and Modern Physics

- Oscillations and Waves
 Sound light radio waves
 - Sound, light, radio waves, microwaves
- Optics – Lenses, mirrors, cameras, telescopes.
 - Interference, diffraction, polarization
- Quantum Mechanics
 - Quantum mechanics, atoms, molecules, transistors, lasers
- Nuclear Physics
 - Radioactivity, nuclear energy

1.1 Simple Harmonic Motion

- Kinematics Sinusoidal motion
- Dynamics -Newton's law and Hooke's law.
- Energetics Conservation of Energy
- Examples
 - Mass on a spring
 - Pendulum

Properties of SHM

- Time for oscillations is independent of the amplitude of the oscillation.
- Useful as a timing device.

Example

A mass on a spring is oscillating with a period of 0.5 s and amplitude of 2.0 cm.

What is the frequency? What is the angular frequency? What is the maximum speed? What is the maximum acceleration?

Applications of harmonic oscillators Pendulum clocks -10s/day Crystal oscillators- Quartz watches - 0.1s/day

 Atomic clocks – Time standards based on atomic transition frequencies. -10⁻⁹s/day

