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1 Introduction

1.1 Motivation

The study of viscous flow phenomena behind a circular cylinder has a long history dating

back to the 19th century. Despite the geometrical simplicity, complicated flow phenomena

occur which are related to the detachment of the flow and the time dependent vortex

shedding. This simple geometrical setup is also the starting point for many more complex

configurations including the flow in heat exchangers and vortex flow meters or around

chimneys and towers. Therefore, this flow has motivated numerous scientists and engineers

to investigate its physics and technical applications through theoretical, experimental and

more recently, computational approaches.

The first milestone in this field was put by von Karman in 1912, who analyzed the stabil-

ity of vortex street configurations and established a theoretical link between the vortex

street structure and the drag on the body. Later in 1954 Roshko carried out extensive

measurements of the vortex shedding. Over the last 50 years a great number of scientists

like Williamson, Karniadakis and Triantafyllou, Coutanceau and Bouard, Fornberg, Chen

and others were involved in the investigation of this flow, so nowadays a large number of

works are available. Yet, most of them concentrate on an infinite flow domain. Confining

walls however can have a big impact on the flow which results amongst other things in a

parabolic inflow profile and an additional damping of disturbances in the flow field.

The flow in a confined domain is of interest for many technical applications, e.g. tubes of

heat exchangers in cross flow. For computational fluid dynamics (CFD) investigations the

well defined solid boundary in span-wise direction is also advantageous. Nowadays, many

numerical approaches are available and applied to flow simulations. Especially during the

last several years, discrete mesoscopic CFD methods, including the lattice gas automata

(LGA), and the lattice Boltzmann approach (LBA), have attracted increasing attention.

These lattice methods are based on a discrete particle description of the fluid. They provide

many of the advantages of molecular dynamics such as clear physical pictures and are much

easier ti implement from the computational point of view. The resulting algorithms allow

a fast and efficient simulations on modern computers. But as these methods are relatively

new, there are still many open questions and possibilities for improvements. Especially

the efficient handling of boundary conditions can be crafty.

1.2 Aim of This Thesis

The subject of this thesis is the investigation of the viscous flow around a circular cylinder

in a channel at moderate Reynolds numbers using the lattice Boltzmann method. The

Reynolds number range is chosen in such a way that the flow is time dependent, i.e.

vortex shedding occurs. Thus, the lower limit is given by the critical Reynolds number

Rec. The upper limit for the Reynolds number is due to the fact that only two dimensional
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calculations are carried out. Therefore, it is no use to go beyond a Reynolds number of

about Re∞ = 150 because above it, three dimensional flow phenomena, which cannot

be recovered correctly by the two dimensional simulations, already begin to occur, long

before the flow becomes turbulent at much higher Reynolds numbers.

The fluid mechanical aspect of this work is to investigate the influence of the channel

walls and the blockage ratio (i.e. the ratio between the cylinder diameter and the channel

height) on the critical Reynolds number and frequency of the vortex shedding. Only little

information on this topic can be found in literature as most of the reported investigations

focus on unbounded flows.

From the numerical point of view, this test case is very well suited to investigate the

influence of the grid resolution (i.e. discretisation of the geometry, size of gradients) as

well as the domain length (i.e. distance between the region of interest and the inflow and

outflow) on the fluid mechanical results. In particular, if the computational domain is too

short, the vortex shedding may severely be affected by the outflow boundary conditions.

Lattice Boltzmann methods are usually applied on an equidistant Cartesian mesh using

the marker-and-cell approach which considers only two cell states: fluid or solid. Solid

cells are blocked and therefore impermeable for fluid. Arbitrary geometrical shapes can

be approximated on the lattice this way. The bounce back boundary condition allows a

very efficient implementation of a no-slip boundary condition on the surface of the solid.

However, the surface can only be described by a staircase approximation which resembles a

LEGO-model. In the case of curved objects like a cylinder, this geometrical discretisation

can have a large impact, especially on coarse grids at high Reynolds numbers. Recently,

more advanced boundary conditions (e.g. boundary fitting) have been proposed for lattice

Boltzmann methods which allow a much better description of the actual geometrical shape

and surface. However, the computational effort of such boundary conditions is much higher

and they tend to be less stable from the numerical point of view. Thus, the third aspect

of this thesis is to test if better results (i.e. in particular more accurate results on coarse

grids) can be obtained for low Reynolds number flows by using boundary fitting instead of

bounce back. These results shall help to decide if it is worth or necessary to implement this

sort of boundary condition into the actual production code BEST taking into account

the effort of an efficient implementation and the much higher run-time costs compared to

the standard bounce back rule.

For all investigations and the comparison with literature, the dimensionless vortex shed-

ding frequency, the Strouhal number, is chosen. This quantity characterizes the time

dependent flow behavior very well and can easily be determined from the wake.
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1.3 Outline

This thesis is divided in the following sections:

• In chapter 2, the physical basics of the flow around a cylinder and the vortex shed-

ding are summarized. This includes the definition of the characteristic dimensionless

numbers (Re, St, CD and CL) and a description of the different flow patterns which

occur with increasing Reynolds numbers. The influence of channel walls as well as

the influence of the size of the computational domain are envisaged. At the end

of this chapter, the historic evolution of the numerical simulation of the flow past

cylinders from potential theoretical approaches to the numerical solution of the

Navier-Stokes equations is shown.

• The lattice gas automata and the lattice Boltzmann approach are introduced in

chapter 3.

• The investigated setup together with the applied boundary and initial conditions

are described in chapter 4. Both, the bounce back and the boundary fitting boundary

conditions model are described in detail. The procedure of determining the Strouhal

number is also outlined in this chapter.

• In chapter 5, the calculated test cases are described. The results of the simulations

are discussed and compared with literature.

• Finally, the results are summarized and an outlook to further investigations is given

in chapter 6.
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2 Vortex Shedding behind a Circular Cylinder

In this chapter the physical background of the flow around a cylinder and its characteristics

are introduced. The dimensionless numbers referred to the problem are defined and the

the different flow regimes depending on the Reynolds number are described. The influence

of channel walls and the influence of the size of the computational grid are summarized

and at the end of the section some historic outlines of the development of the numerical

simulations can be found.

2.1 The Relevant Dimensionless Numbers

The reason why alternating vortex detachments appear behind a thin body is the occur-

rence of instabilities in its wake. Those instabilities in impulse transport induce a process

of periodic mutual displacement. Thus in a two dimensional flow behind bluff or round

cylinders long vortex streets are formed. Below certain Reynolds numbers, which depend

on the geometry, all instabilities are baffled by the molecular viscosity and no vortex street

appears. Normally, for the description of a vortex street there are two dimensionless num-

bers used:

• Reynolds number

Re∞ =
U∞ · d
ν

• Strouhal number

St∞ =
f · d
U∞

The Reynolds number itself can be seen as a ratio of the characteristic length of the body,

in our case the cylinder diameter d, multiplied by the free-stream velocity U∞ and the

kinematic viscosity ν.

The time-dependent behavior is described by the dimensionless Strouhal number, where

f is the frequency of the oscillation of the transient flow and d and U∞, as in the definition

of the Reynolds number, introduce the characteristic length of the object and the charac-

teristic velocity. The Strouhal number can be considered as a dimensionless measure for

the vortex shedding frequency.

Other important dimensionless numbers are the drag coefficient CD and the lift coefficient

CL.

CD =
FD

1/2ρU2
∞d

(1)

CL =
FL

1/2ρU2
∞d

(2)
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They are calculated from the sum of the viscous and pressure forces given by

FD = FDν + FDp =
∫
S
µ
∂Ut
∂ny

dS −
∫
S
PnxdS (3)

FL = FLν + FLp =
∫
S
µ
∂Ut
∂nx

dS −
∫
S
PnydS (4)

where Ut is the tangential velocity and nx and ny are the x- and y- components of the

normal vector to the cylinder surface S. The non-dimensional coefficients are obtained by

normalizing the forces with the dynamic pressure.

The influence of the drag and lift coefficients can be seen in figure 1. In the attached and

in the steady recirculating flow regimes, i.e. at Re∞ ≤ 40, the only force acting on the

cylinder is the drag in the flow direction.

Figure 1: A two-dimensional presentation of the drag and lift coefficient acting on the
cylinder

Finally, when there are confining walls, the flow development depends on a geometrical

parameter, namely the diameter-to-width ratio or the so called blockage ratio

β =
d

H
. (5)

Another point must be considered in case of confining walls. In a channel with laminar

flow, after some time a parabolic velocity profile builds up. Unlike the free, unbounded

flow where the value of the velocity in front of the obstacle is the same along the whole

height of the domain (figure 2), here a maximum value is to be found in the middle and

zero velocity at the channel walls (figure 3).

Previous works dealing with an object immersed in a flow confined by channel walls don’t

give an explicit answer to the question which velocity — the maximal or the mean one,

should be taken into account when calculating the dimensionless numbers like Reynolds

and Strouhal for instance. Zovatto and Pedrizetti [38] defined two different velocities,

respectively two different Reynolds numbers: the Reynolds number of the channel — a
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Figure 2: Profile of the free-stream velocity when there are no confining walls

Figure 3: Profile of the velocity with confining walls

function of the average velocity in the channel, the channel height and the fluid viscosity

and the cylinder-based Reynolds number where they used the mean velocity of the undis-

turbed parabolic flow profile at the height of the cylinder cross-section and the cylinder

diameter (see chapter 5.6.6). Exactly the same did also Chen at al [6]. Kiehm at al [22],

as well as Th. Zeiser [37] gave Reynolds number as a function of the average channel inlet

velocity and the diameter of the cylinder. This last method is also favored and applied

within this thesis, and our arguments are: if one takes the maximal velocity (i.e. the veloc-

ity in front of the parabolic profile) it yields lower values for the Strouhal number, which

comply with the values found in literature for an unbounded domain, but the drawbacks

of this approach would be, that the critical Reynolds number shifts up to quite high val-

ues: Rec ≈ 80 and higher. Yet, one should take into account the fact that a parabolic flow

profile is set. Then it seems more plausible to use the mean velocity which can be read

off after the simulations or take 2
3

from the maximal velocity which should be equal to

the value that can be read off. Because of the lower denominator in the formula for St in

this case it will be higher than those found in other studies, but this is only due to the

confinement of the flow.

2.2 Flow Regimes Behind a Circular Cylinder

It was already mentioned that the character of the flow depends on the Reynolds number,

and for a cylindrical obstacle geometry there is a sequence of different Reynolds number

ranges, in which different flow regimes occur. In the literature there is no clear division of
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those regimes. In the flow visualization task in [10] there are five regimes presented, also

by Graham [15] they are 5, but the most detailed dispartment can be found by Franke

[12], who introduced seven regimes for the flow past a circular cylinder which are outlined

below

• Flow past the cylinder without detachment, the so called Stokes flow for very small

Re numbers

Re∞ < 1

• Symmetrical detachment of the so called Föppl-vortex

1 < Re∞ < 40

• Laminar vortex street

40 < Re∞ < 150

• Transition from laminar to turbulent vortex street

150 < Re∞ < 300

• Completely turbulent vortex street with laminar boundary layer on the cylinder

300 < Re∞ < 300000

• Transition from laminar to turbulent boundary layer on the cylinder — completely

turbulent wake without clear vortex street

300000 < Re∞ < 3500000

• Turbulent boundary layer and completely turbulent wake with vortex street

structure

3500000 < Re∞
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For very low Reynolds numbers (Re∞ < 1) the streamlines pass by the cylinder without

forming any disturbances or irregularities.

By increasing the fluid speed, the flow changes gradually. For Re∞ > 1 there is a recir-

culation behind the body. First it was thought that the recirculation grows continuously,

but recently, it has been assumed that it appears suddenly, and it is certain that the

recirculation length increases with Re. In any case, the character of the flow is different

and a pair of vortices forms behind the cylinder.

The flow changes again by the time it gets to Re∞ = 40. There is suddenly a complete

change in the character of the motion. What happens is that one of the vortices behind

the cylinder gets so long that it breaks off and sets off downstream with the fluid. Then

the fluid curls around behind the cylinder and generates a new vortex. The vortices peel

off alternately on each side, so that an instantaneous view of the flow looks roughly as

sketched in the third figure above. The stream of vortices is called a “von Karman vortex

street”.

There is a complete difference in the flow patterns in the third figure compared to the first

two figures. While in the first two the velocity field is static, the velocity for Re∞ > 40 at

any point varies with time. For these higher Reynolds numbers there is no steady state

solution, but the time-dependent oscillation of the flow follows a regular, cyclic fashion.

As the velocity increases further there is less and less time for the vorticity to diffuse into

a larger region of the fluid. By the time we reach Re∞ = 150 the vorticity begins to fill

in a thin band. The region is called boundary layer and this irregular flow region, where

the fluid is subject to shear forces, works its way upstream as Re is increased.

In the turbulent region, the velocities are very irregular and noisy; also the flow is no

longer two-dimensional but twists and turns in all three dimensions. There is still a regular

alternating motion superimposed on the turbulent one.

As the Reynolds number goes up, the turbulent region works its way forward until it

reaches the point where the stream lines leave the cylinder. Thus the turbulent boundary

layer is set. Also there is a drastic change in the drag force; it drops by a large factor. In

this region the drag force actually decreases with increasing velocity and there seems to

be little evidence of periodicity.

Further on, experiments which go up to Reynolds numbers in the range of 107 indicate

that a new periodicity appears in the wake, either because the whole wake is oscillating

back and forth in a gross motion or because some new kind of vortex is occurring together

with an irregular noisy motion.

The itemization of the Reynolds number regimes for the circular cylinder shows, which

importance the implementation of the turbulence can have for the development of the

total flow. But in this work we consider only the laminar, time-dependent case.
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2.3 Influence of the Computational Domain on the Flow

For the design of the computational domain and grid it is important to consider some

details at this point. In general, for the calculations of the different flow regimes two

different types of computational domains and grids have to be employed (circular and

rectangular) in order to achieve reasonable output: one for the lower and one for the

larger values of Re. For all simulations at very low Reynolds numbers (Re∞ < 1), the

computational domain has to be extremely large and adjusted to the actual value of Re.

The use of a circular domain is advantageous in this case. Because the region of the flow

disturbed by the cylinder at low values of Re is of similar magnitude in front and at

the rear of it. For Reynolds numbers larger than about 1, a pair of standing vortices

appear at the rear of the cylinder, demanding a finer discretization of that region. And

for laminar vortex shedding flow regime at moderate Reynolds numbers (Re∞ > 40) the

computational domain has to be elongated downstream in order to capture correctly the

von Karman vortex street. On the other hand the cylinder disturbs a smaller region in the

front and lateral directions compared with the other regimes. Therefore a different type

of domain, a rectangular domain has to be adopted for this range of Reynolds numbers.

Another item that should be taken into account is that if the boundary of the computa-

tional domain does not approximately accompany the expansion of the influence region

at smaller Re numbers, the error caused by the artificial boundary condition disturbs the

solution, affecting even the vicinity of the cylinder.

The present work, being a two dimensional simulation of a flow around a cylinder, allows

calculations only for a laminar flow, which means Re∞ < 150. In this case a rectangular

channel with dimensions much larger than those of the cylinder itself has been chosen. As

the flow in a confining box is investigated, the lateral dimension is fixed by the blockage

ratio and only the length of the domain is variable. A special study devoted to the question

how big the influence of the length of the domain and the size of the obstacle (section 5.2

and 5.3) is, was carried out in order to obtain an optimal geometrical configuration.

2.4 Influence of Confining Walls

In many studies from the beginning of the 20 century till the present days the unbounded

flow domain introduces difficulties in the analysis from the theoretical and numerical

points of view. The reason why numerical studies regarding confining walls are carried out

is that for a flow which is unbounded in all directions, the truncation of the flow domain is

inevitable in any numerical simulation. However, this will pose many difficulties, mainly

because there are only partial estimates for the decay of solutions of the Navier-Stokes

equations at large distances. Accordingly, there is no way of knowing how to truncate the

flow domain for computational purposes so as to provide a provable approximation of the

flow in the unbounded domain. Secondly, since all experiments must be carried out in

experimental facilities of finite size, no theoretical or computational investigation can be
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compared with experimental investigations. In addition the confined flow is of importance

for many technical applications as shown in the introduction.

All the data from the experimental investigations done by Grove et al. (1965) [16], Acrivos

et al. (1968) [1], Coutance and Bouard (1977) [8] and Smith (1979) [28] show that the

stability of the steady wake is greatly enhanced by the increase of the blockage ratio,

since the wake instability is caused primarily by the disturbances which are generated in

a direction perpendicular to both that of the undisturbed flow and the axis of the cylinder.

Thus it appears reasonable that the propagation of such disturbances should be inhibited

by the presence of the walls which confine the streamlines near the cylinder. Acrivos

made experiments with Reynolds numbers lower than 150 and blockage ratios 0.025 and

0.05, Coutance and Bouard worked in the range 5 < Re < 40 and with blockage ratios

0.024 < β < 0.12 and both studies yielded results which agree with Grove’s observations,

that the eddy length varies nearly linearly with the blockage ratio.

As for numerical studies, the problem of estimating the onset Reynolds number for sepa-

ration has not yet been carefully and systematically investigated. Numerical studies were

done by Fornberg (1980) [11] and Chen (2000) [7]. The results from Chen, just like those

from Fornberg, once again confirmed the theoretical arguments put forward by Smith,

namely that the elongation development of the recirculating region linearly follows the

Reynolds number.

2.5 The Numerical Simulation of Vortex Streets — a Historic

Overview

With the increasing efficiency of the available computer systems the simulation of in-

stationary periodic flow became possible within realistic processing time. In contrast to

experimental measurements, the numeric approach allows a relatively simple access to

the complete velocity and pressure fields and thus a detailed analysis of the flow process.

The main problems of numerical methods is above all the question of the accuracy of

the solution and the numerical stability, moreover only idealized boundary conditions,

especially at the outlet of the flow can be predetermined.

Because of the practical importance of the periodic vortex detachment, in the last years

there were taken pains to predict those flow regimes. The variation width of the tech-

niques applied for this purpose has been summarized by Celik (1986) [5]. The described

approaches can be divided in two classes:

• The numerical solution of the potential theoretical approach considering the interac-

tions with empirically brought-in viscosity influences and discrete vortices (discrete

vortex methods)

• The numerical solution of the Navier-Stokes equations

a) in the time-averaged form

b) in the time-dependent form
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In the discrete vortex methods by means of a Lagrange approach the transport of rotating

afflicted fluid elements (discrete vortexes) over the Biot-Savart law is determined. The

flow velocities are then determined from a potential theoretical approach, in which the

influence of the discrete vortices shrinks. The biggest disadvantage of this process is the

necessity that the discrete vortices should be brought in the flow field by the use of

empiric information explicitly at the point of detachment. Since the position of the point

of detachment and the vortex powerfulness depend on the geometry and the Reynolds

number, the universality of the approach is limited.

Methods, which can numerically solve the complete, non-linear Navier-Stokes equations

and the continuity equation are preferred because of their wider range of application.

This technique was applied already more than 30 years ago for the periodic flow past

cylinders by Son and Hanratty (1969) [29], but still nowadays there are studies which

deal exclusively with two-dimensional vortex street at low Reynolds numbers and don’t

take into account the stochastic functions. For a spatial two-dimensional computation the

equations are either formulated in primitive variables (u, ν, p) or by means of the stream

function and the rotation.
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3 Introduction to the Lattice Boltzmann Approach

This chapter gives a brief introduction to lattice gas and lattice Boltzmann methods.

More information on the subject including details of the mathematical derivations can be

found e.g. in J. Bernsdorf [2], J. Buick [4], D. Hanon and O. Tribel [17], F. Huber [19]

and Kohno [23].

3.1 The Development of Lattice Gas Automata

The first model of Lattice Gas Automata (LGA) was invented in 1973 by Hardy, Pomeau

and de Pazzis [18] (it is thus called “HPP”-model), in order to study ergodicity-related

problems. These systems being entirely discrete present the advantage of a straightforward

implementation on computers and they allow to perform simulations with many more

particles than “realistic” models in which one has to take into account the continuous

values of positions, velocities and interaction potentials with finite precision.

The HPP-model is based on a square lattice whose nodes can be occupied by the “fluid”’s

particles. Thus space is discretized, and in practice it is also finite. The boundary con-

ditions are usually chosen periodic. In addition, momentum is also disturbed in discrete

fashion: all particles have the same mass (equal to one unit) and equal absolute velocity

also equal to one unit, i.e. they will fly from one lattice node to the nearest neighbor in

one unit of time (thus time is absolutely discrete). Furthermore, an exclusion principle is

imposed on the particles for numerical efficiency reasons, i.e. no two particles may sit si-

multaneously on the same node if their direction is identical. On the HPP’s square lattice

this implies that there can be at most four particles per node.

The interactions between the particles are simple: they may only take place on nodes with

several particles, taking the form of local instantaneous collisions. The collision rules are

chosen in order to conserve both mass and momentum. In this model there is no additional

conservation law associated to energy since energy is directly proportional to mass; it is

thus trivially conserved.

The evolution of the system from one time-step to the next takes place in two successive

stages:

• propagation: the particles move from their node to the nearest neighbor in the

direction of their velocity vector

• collision: particles on the same node may exchange momentum if it is compatible

with the imposed invariance-rules.

It was quickly realized though, that HPP presents only limited applications. The un-

derlying reason for this is that the lattice is based on a very limited symmetry-group

of order four. This leads to macroscopically anisotropic Navier-Stokes equations. It was
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proved that this main defect does not appear when using a lattice with triangular cells

and hexagonal symmetry.

That was the main consideration leading to the birth of the FHP-model (invented by

Frisch, Hasslacher and Pomeau [13]) in the mid-eighties. The basic ideas are the same

as those underlying the HPP-model, but the lattice’s symmetry group of order six of-

fers greater wealth. First of all, the FHP’s Navier-Stokes equations make microscopical

hydro-dynamical simulations possible, both in laminar and turbulent flows, and in an

environment which can easily be controlled. Moreover, the number of effective collisions

is much greater than what was available by the HPP-model, which affects the viscosity

of the fluid.

Sure enough, the lattice gas model family has also been extended to simulate three dimen-

sional hydrodynamics. The fact that there is no three dimensional lattice with sufficient

symmetry to lead to isotropic Navier-Stokes equations requires a short detour in the

fourth dimension: the projections of a “slide” of a lattice formed by tesseracts (“four-

dimensional cubes”) into three dimensional space does the trick. The model is called

FCHC-model (“Face Centrated Hyper-Cubic” lattice) and has been validated both by

theory and by numerical experiments.

3.2 The Background of the Microscopic Model of Fluids

Using kinetic theory we are able to predict macroscopic characteristics of a fluid on the

basis of a detailed microscopic description of the distribution of speeds of individual

molecules and a set of approximations about how individuals interact. There are a few

obstacles concerning the description of the behavior of the macroscopic fluids. One main

problem is the complexity of interactions and another is the huge number of molecules,

which have to be considered. Therefore, the real micro-world cannot be used for solving

usual configurations.

To allow an efficient simulation of the macroscopic behavior, the real micro-world has

to be replaced by an effective model as simple as possible which still leads to the same

macroscopic behavior. The basic idea is that all details of the microscopic interactions are

not relevant for the overall behavior. Thus it is sufficient to use a model with much less

particles and simple interaction/collision rules. The particle movement can take place on

a regular lattice. The most important feature of the collision rules — which may be purely

local — is that they conserve mass and momentum, because these are also the quantities

which are of interest in the macroscopic limit.

Thus it is possible to construct a very simple model which efficiency runs on computers.

This artificial system may be called cellular automata [34].

The transition from the micro-world to the macro-world consists in ensemble averaging.

This step is the same for the real micro-world and the simplified model. It consists of cal-

culation average distribution probabilities over large enough spatial areas or long enough

time periods to give noise-free values of ρ and ~u.
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As mentioned above the particles in the model system have unit mass and move in discrete

time steps with unit velocity in one of the few directions. The movement is described in

a dimensionless form: the unit length lu is the distance between two neighbor nodes, i.e.

the diagonal and the time tu is defined as the time interval a particle has to move from

one node to a neighbor node (= lu). Consequently, the particle or lattice velocity ei has

the value 1

x = l/lu and t = t/tu → ei = x/t = (l/t) ∗ (tu/lu) (6)

in the time tu the particle moves the distance l = lu → ei = 1.

To summarize: the difference between a real gas and a lattice gas model consists of the

following:

• The particle density on the lattice is by scales smaller than the one in real gas,

which contains about 1019 molecules per cm3.

• The use of particles with unit mass, whereas a real gas can include different masses,

if different molecular types are present (e.g. in a gas mixture).

• A real gas also shows a velocity distribution affecting a continuous momentum dis-

tribution. Lattice gas particles have unit velocity and move only in the directions

of the lattice links. Therefore, they have a discrete momentum.

• Finally, advection and interactions in a real gas are random. In a lattice gas the

particles move and collide in discrete time steps until the system converges, that

means until the macroscopic quantities (like local fluid density) determined from

the model vary slightly around a constant value for the given conditions. In this

way, lattice gas simulations are an iterative process.

Despite the simplifications such automata provide reasonable results, because details of

the microscopic interactions are not relevant for fluid dynamic simulations.

3.3 The Lattice Gas Algorithm

As mentioned before, a lattice gas simulation is an iterative process solving the time

evolution of the fluid. At each time step an algorithm composed of three main steps

is performed. In the following an octagonal lattice is assumed — but without loss of

generality.

propagation: per time step, the particles propagate along one of the eight possible di-

rections from one cell to its next neighbor cell according to their lattice vector. This

process is called advection or propagation.
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collision: if well defined particle configurations occur, collisions take place. The particles

exchange momentum while conserving the total mass and momentum at each node.

The microscopic interactions are strictly local because they involve only particles at

a single node.

wall boundary conditions: boundaries and obstacles can be introduced into the model

by initially labelling certain lattice cells (marker-and-cell approach). Thus any geo-

metrical structure can be depicted. Different collision rules are then applied at these

cells. No-slips are introduced at a boundary by forcing any particle colliding with

the boundary to return along the link on which it approached.

The micro-dynamics consist of a repetition of propagation, collision and bounce back and

this loop is iterated until an equilibrium state is reached that means for steady systems

conditions until the local macroscopic quantities reach a constant value. In this case of

time-dependent flows, each iteration gives the results of the next time step. In any case the

macroscopic quantities (like ~u, ρ) can always be calculated from the particle distribution

by the so-called ensemble averaging or coarse graining.

3.4 The Lattice Boltzmann Approach

The big advantage of LGA is the simlicity of the algorithm. But using discrete/boolean

occupation states (i.e. particle is present or not) leads to large statistical noise which
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requires averaging over large areas or many time-steps to get smooth macroscopic variable

changes. These drawbacks no longer exist in the LBA while the simple algorithm is kept.

3.4.1 From Lattice Gas to Lattice Boltzmann

The lattice Boltzmann appraoch has evolved from the lattice gas models. Various modifi-

cations have been made to overcome the difficulties with the lattice gas approach to fluid

modelling, but using its advantages. Unlike the lattice gas, the LB does not use binary

particles. Instead of particles, the model deals with continuous particle density distribu-

tion functions. These density distributions represent the probability to find particles on

a single node moving in a certain direction. In the dimensionless form, they can be con-

tinuous values between 0 and 1. Thus the macroscopic values change smoothly without

averaging. The distribution functions interact again locally, i.e. only distributions at a

single node are involved. After “collision” they propagate to the next neighbor node.

As a second point, the collision process can be simplified. The Boltzmann equation (BE),

the basis of LB, describes the motion and interaction of fluid particles, by using a single

particle distribution function f .

∂f

∂t
+ ~ξ

∂f

∂~x
+ ~F

∂f

∂~ξ
= Ω(f) (7)

with ~ξ = microscopic particle velocity
~F = body force per unit mass and

Ω(f) = collision integral

The Boltzmann equation is an approximation of the real fluid. The collision integral

considers only 2-particle collisions. Furthermore the particle velocities are assumed to be

uncorrelated before collision.

3.4.2 Discretization of the Boltzmann Equation

In order to get an equation applicable for computational simulations, the BE has to be

discretized: the velocity space is discretized by introducing a finite set of discrete velocities

~ei and associated distribution functions Ni(~x, t) and in a second step, time and space are

discretized.

This leads to the so-called lattice Boltzmann equation, which is the equation of the LB

method.

Ni(~x+ ~ei ·∆t, t+ ∆t) = Ni(~x, t) + Ωi (8)

where the left side represents the propagation; ~x+ ~ei ·∆t refers to the next node; t+ ∆t

the next time step; ~x is the local node, t the current time and Ωi is the collision operator.

Still the collision integral is a problem. It has a very complicated structure, therefore

alternative, simpler expressions have been proposed. The idea behind the replacement is
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that the large amount of detail about 2-body interactions is not likely to influence the

values of many experimentally measured local macroscopic quantites significantly, i.e. no

detail information about the particle interactions are necessary [35].

3.4.3 BGK Relaxation

The most widely known collision model is the BGK approximation named after their

authors. Here, the collisions are not explicitly defined, but they are kind of fictive. The

idea is to simplify the collisions as a relaxation process towards the local equilibrium state

expressed by equation (9). The BGK approach can be written in the continuous form with

f as well as in the discretized form with Ni.

Ωi = ω[N eq
i (ρ, ~u)−Ni(~x, t)] (9)

with ω = relaxation parameter

N eq
i = Maxwell-Boltzmann distribution function (MB) (equilibrium density distribution)

Ni = discretized distribution function.

The concept of this approach is that the collisions at a certain space point and time

instant change the distribution function Ni at that point by an amount proportional to

the departure of Ni from the Maxwellian equilibrium distribution. The physical motivation

is that each system tries to reach its equilibrium state. The local equilibrium state for the

considerated flow systems is given by the Maxwell Boltzmann distribution. The collision

frequency (which gives the viscosity of the fluid) determines how fast this occurs.

For computational simulations using the Lattice Boltzmann equation with the BGK ap-

proach, the Maxwell-Boltzmann equilibrium distribution has to be discretized in the veloc-

ity space by a Taylor expansion. In order to describe the correct hydrodynamic behavior

of the fluid, the velocity terms up to 2nd order have to be taken into account.

N eq
i = tp · ρ(1 + 3 · ~eiα · ~uα +

9

2
~uα · ~uβ(~eα · ~eβ −

1

3
δαβ) (10)

with tp — lattice direction dependant constant

~u — macroscopic velocity

α, β : {x, y, (z)} — component of the local lattice link; Einstein summation applied over

repeated indices

i = 0 · ·N — index of the local lattice link

and δαβ — Kroneker-Delta operator.

3.4.4 Numerical Application of the Lattice Boltzmann Appraoch

Now, the lattice Boltzmann equation using the BGK approach can be applied for compu-

tational simulations. For a given space point and time step this equation consists of the

same simulation steps as the algorithm of the lattice gas model.
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• The relaxation step with the BGK approach reflects the influence on the distribu-

tion function due to collision, i.e. the particle distribution changes according to the

relaxation rule. This step replaces the collision step in LGA.

• After the collision the particle distribution propagates along its associated link to

its next neighbor node. The direction is again determined by the lattice vector. This

step is the same as in LGA.

The transfer of the microscopic states to the macroscopic level is easy.

density ρ(~x, t) =
∑
Ni(~x, t)

velocity ~u(~x, t) =
∑

Ni(~x,t)·~ei
ρ(~x,t)

viscosity ν = 1
6
( 2
ω
− 1)

pressure p = ρ · c2

Like the lattice gas model, the LB simulation describes the time evolution and the

microdynamics consists of a repetition of local relaxation and propagation. It can be

applied to a variety of science and engineering fields including highly complicated fluid

dynamic phenomena like multi-phase flow, turbulent flow, internal flow in complicated

structures, etc.
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4 Evaluation of the Vortex Shedding in a Channel

In this chapter the boundary and initial conditions are introduced, whereas the algo-

rithm of two types of boundary conditions — the bounce back and the boundary fitting

approaches are described. The range of investigated Reynolds numbers as well as the

evaluation of the detachment frequency and determination of the Strouhal numbers are

explained in detail.

4.1 Investigated Reynolds Numbers

Considering the fact that the periodic detachment starts at Re∞ = 40 for the unbounded

flow or higher for confined flow, values between Re∞ ≈ 60 and Re∞ ≈ 210 have been

chosen for the computations. As already discussed in section 2.1, the characteristic velocity

(and length) can be defined in several different ways if channel walls are present. As we

decided to use a Reynolds number based on the cylinder diameter and the mean channel

velocity, the rescaled Reynolds number range is Remean = 41 to Remean = 146. The correct

definition of the Reynolds number (and the Strouhal number) must always be considered

when comparing with data from literature. Commensurable experimental data can be

found in section 5.6 where this point has carefully been taken into account.

In the numerical simulation once the obstacle size is defined, there are only two parameters

to be set to obtain the Reynolds number — the inlet velocity and the viscosity. The

Reynolds numbers are manually incremented by decreasing the viscosity, i.e. simultaneous

increasing of the relaxation parameter ω.

By all simulations, the following procedure was applied: the channel parameters (length,

height and blockage ratio), the obstacle size and the desired range for the Reynolds number

were chosen. On the basis of these Reynolds numbers the kinematic viscosity, respectively

the relaxation parameter were computed and specified in the parameter file along with

the maximal inflow velocity Umax = 0.05. After running the simulations the detachment

frequency used by the determination of the Strouhal number and the actual mean velocity

in the channel, which is around 2
3

of the specified one, are read off.

After evaluating the results, it turned out that the actual value of the mean axial velocity

lies in the interval between 0.0340 and 0.0347 instead of being exactly 2
3
· 0.05 = 1

30
. This

slight deviation is due to way the inlet boundary condition is implemented (see below).

In the calculation of the Strouhal number, this measured effective mean velocity is used

and the corresponding Reynolds number is corrected a posteriori.

Normally low velocity values are desired, because in lattice Boltzmann automata, the

approach error increases with the square of the Mach number

Ma =
U

c
(11)

where c is the sound velocity. On the other hand, low velocities lead to a long period of the

vortex shedding as can be seen from equation (12). Thus to avoid too long computational
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Figure 4: Scheme of the channel

durations a compromise between the computational effort and the Mach number error

must be made. In the present case, the Mach number is below 0.09 so that any error

introduced by the Mach number approximation can safely be neglected.

T =
D

St · U
(12)

The velocity is indirectly proportional to the period duration. Thus the number of itera-

tions must increase with the same factor as the velocity decreases if one wants to retain

the same number of periods because the time step ∆t is fixed in the lattice Boltzmann

approach.

4.2 Schematic Presentation of the Channel

The computational domain is presented in figure 4, though in the different investigated

cases the Reynolds number, the obstacle size and the distance between the obstacle and

the boundaries of the computational domain vary. The center of the obstacle lies invariably

horizontally at 1
4

of the length of the computational domain and vertically in the middle

of it. The exact specification of the different lengths can be found in the sections where

the different results are discussed (tables 1 to 5). In general, the blockage ratio varied

between 0.1 and 0.4. The length L of the domain was set up to 160 diameters leading up

to 102× 1600 voxels.

4.3 Boundary and Initial Conditions

The upper and lower boundary of the computational domain consist of the channel walls.

There, as well as on the surface of the cylinder, a no-slip boundary condition is applied

which ensures that both components of the velocity are zero. Depending on the pro-

gram version used, bounce back or boundary fitting are used. Details on these boundary

conditions are given later in section 4.5.
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At the inlet a parabolic velocity profile is set using the maximal velocity Umax. In lattice

Boltzmann methods the specification of the pressure and the velocity is not sufficient,

because not they, but the particle density distribution is saved on the nodes. That is the

reason why at the inlet the macroscopic density is extrapolated from the cells downwards

and along with the specified macroscopic flow velocity they are used to calculate the

according equilibrium distribution by applying the formulas:

N eq
0 =

4

9
ρ(1− 3

2
u2) (13)

N eq
i =

1

9
ρ(1 + 3ci · u+

9

2
(ci · u)2 − 3

2
u2) for i = 1, 3, 5, 7 (14)

N eq
i =

1

36
ρ(1 + 3ci · u+

9

2
(ci · u)2 − 3

2
u2) for i = 2, 4, 6, 8 (15)

At the outlet from the cells upwards the flow the velocity is extrapolated and together

with the fixed pressure it is used by the calculation of the equilibrium distribution. Particle

density distributions that reach the inlet and outlet cells by propagation are not considered

any further and at each iteration overwritten by the calculated equilibrium distribution.

Using the equilibrium distribution function in the inlet and outlet row introduces a small

deviation of the effective values from the desired ones. As a result, the actually obtained

inlet velocity is not exactly the one which is set. The difference depends on the relaxation

parameter (the speed with which the equilibrium is approached within the flow) as already

mentioned in section 4.1.

As initial condition ~u = 0 and p = const at t = 0 is chosen. This solution is correct from the

fluid mechanical point of view and can correctly be expressed in terms of the equilibrium

distribution function. Then a ”pump” is smoothly turned on by slowly increasing the axial

inflow component (the transversal component is always 0) and increasing the relaxation

parameter in the form of a sine-function over a few thousand iterations.

4.4 Evaluation of the Detachment Frequency

In order to determine the detachment frequency one cell in our computational domain

was selected and the time evolution of the v-velocity was observed. Figure 5 shows this

temporal evolution.

For the evaluation of the obtained data, the power density spectrum of the v-velocity is

calculated. For this purpose the autocorrelation and Fourier transformation functions of

the visualizing tool xmgr are applied. The result of the two transformations is the power

density spectrum. Since the Fourier transformation is in the range between (−∞;∞), but

in practice only a discrete number of data is available, through the spectral analysis only

discrete frequency information is obtained. In order to increase the resolution it’s not

enough to increase the sampling frequency to enlarge the sample length. The number of

independent data values — that is the observation duration, is much more important. The
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Figure 5: Development of the v-velocity in the point with coordinates x = L
2 and y =

H
2 + 0.5 in a coordinate system based on a cartesian coordinate system starting
in the low left corner of the computational domain. Remean = 131.9, β = 0.2.

minimal necessary sampling rate fs = 1
T

at which still no information gets lost, is given by

the sampling theorem. This theorem states that for a limited bandwidth (band-limited)

signal with a maximum frequency fmax, the equally spaced sampling frequency fs must

be greater than twice of the maximal frequency fmax, i.e.,

fs > 2fmax

in order to have the signal be uniquely reconstructed without aliasing. Each periodic length

should acquire at least 2 points. If in the spectrum even greater frequencies appear, those

won’t be recognized and through aliasing improperly appear at smaller frequencies.

In all investigated test cases, every 100 iterations were chosen to be sampling time points

independently of the obstacle or grid size. The sampling theorem is fulfilled, since the

vortex detachments are expected to appear by frequency smaller than 1
1000

iterations.

Evaluating the detachment frequency, there’s one phenomenon that draws one’s attention.

After applying the autocorrelation and Fourier transformation tools of xmgr one expects

to obtain just a single peak in the power density spectrum of the v-velocity, which value

of the axial coordinate would give the most frequently recurrent detachment frequency.

As a matter of fact in all cases of the present study, there were three or more peaks of a

different height (see figure 6 and figure 7). Nevertheless, always the first peak supplies us

with the most reasonable values for the detachment frequency and Strouhal number and

the following peaks are nothing but its superharmonics (i.e. multiples of the frequency of

the first peak).

With the help of a few numerical experiments it could be demonstrated that the height of

the peaks depends on the y-coordinate of the cell in which the v-velocity is measured. The

further the cell is from the middle of the channel, the higher the first peak is. Two cases
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a)

b)

c)

Figure 6: A closeup look at a) the v-velocity and b) and c) the power density spectrum
plotted against the Strouhal number for β = 0.2 and Remean = 83.3. In b)
the marked cell from which the evolution of v-velocity was observed was placed
vertically about H

10 from the middle of the channel and in c) the distance is about
H
5 . Although in the power density spectrum three separate peaks of different
height can be recognized, the value for St is always yielded from the first one
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a)

b)

Figure 7: A closeup look at a) the v-velocity and b) the power density spectrum plotted
against the Strouhal number for β = 0.2 and Remean = 131.9. The cell from
which the v-velocity was measured lied in about the middle of the channel,
that’s the reason why the first peak is not the highest in this presentation. The
coexistence of more peaks is due to the fact, that additional detachment modes
at high Reynolds numbers cause additional disturbances. Again the Strouhal
number is read off from the very first peak.
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were tested — when this cell lies vertically about H
10

away from the middle of the domain,

and when the distance is about H
5

. By means of the results presented in figure 6 b) and

c) we can draw a conclusion that the case of H
5

is the optimal one. Therefore it seems

that closer to the channel wall only the primary detachment is seen whereas in the center

different vortices overlay and secondary effects occur leading to strong superharmonics.

4.5 Boundary Fitting Versus Bounce Back Boundary Condi-

tions

The usual boundary condition for solid walls in LBA is the bounce back boundary con-

dition. The no-slip condition is achieved here by reversing all particles or particle dis-

tributions hitting a wall to their original cell with opposite direction/momentum. The

advantage of this boundary condition is its simplicity. But the position of the wall sur-

face is always halfway between the cells. Thus, the real geometrical surface can only be

approximated by a staircase surface, like a LEGO model.

In recent years, more advanced boundary conditions have been proposed. In this work, the

boundary conditions of Bouzidi et al. (2001) [3] will be investigated. With this boundary

condition, the surface of the solid wall can be placed at any position — not just halfway

between the cells. The basic idea of this enhanced boundary conditions is to consider the

exact position where the surface cuts the links. In cells next to a wall some directions

are not updated by the normal propagation step. In the boundary fitting algorithm of

Bouzidi, some distribution value (before or after propagation) is interpolated from the

two cells next to the wall and after ”advection”, this population reaches the position of

the ”missing information”. In figure 8 the two possibilities which depend on the distance

between the last fluid cell and the intersection point (link-solid surface) are depicted for

1D case.

The location of the wall is given by q = |AC|
|AB| where A is the last node before the wall,

B is the first node behind it (i.e. in the wall) and C is the point where the solid surface

intersects the link. A particle leaving A and reflecting on the wall will not reach a fluid

node after moving with velocity 1 over a total distance 1 except if q is equal to 0, 1
2

or 1,

thereby q = 1
2

is identical with the normal bounce back boundary conditions. This means

that after the collision step the population of particles at A with velocity −1 is unknown.

The following scheme was proposed:

• for q < 1
2

from the available information in the fluid the population of fictitious

particles at location D that will travel to A after bouncing back on the wall at C is

constructed.

• for q ≥ 1
2

the information on the particle leaving A and arriving in D together with

the new postadvection situation at fluid nodes E and F will be used to compute

the unknown quantities at A.



4 Evaluation of the Vortex Shedding in a Channel page 26

Figure 8: The boundary-fitting model applied by the collision of the particles at a wall

Figure 9: Octagonal lattice cell

To use this enhanced boundary conditions for the present configuration of a circular

cylinder, the exact intersection positions must be known. The determination of these

points is not as trivial as it might seem at first glance as all 8 directions of a D2Q9 must

be considered (see figure 9). The following algorithm is applied to get the positions and

distances. All cells which satisfy condition 16 are within the solid.

(x∗ − xcenter)2 + (y∗ − ycenter)2 < R2 (16)

x∗ and y∗ denote the coordinates of the lattice cells and thus they can only be integer

values whereas the center of the cylinder xcenter and ycenter as well as the radius R can be

floating point numbers.

To obtain the exact intersection positions, the equation of a circle has to be solved for

the different lattice lines.

For the horizontal direction, the following equation is solved

R2 = (x∗ − xcenter)2 + (y∗ − ycenter)2 (17)

which gives two values of x for each y∗ = const.
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The distance between x and the closest x∗ in the fluid domain is stored and used as q

during the boundary fitting advection step as described above.

A similar equation also results in the vertical direction.

The inclined lattice lines are defined by

y = x+ k (18)

y = −x+ k (19)

where k is the offset of the lines and k lies in the interval [(xcenter − ycenter) − (
√

2R +

1); (xcenter − ycenter) + (
√

2R + 1)] for the lines with positive slope and in the interval

[(xcenter + ycenter)− (
√

2R+ 1); (xcenter + ycenter) + (
√

2R+ 1)] for the lines with negative

slope. x and y can now both be floating point numbers but k is always integer. Again,

the two intersection positions for each k are determined from the equation of the circle

and the distance from the closest fluid node to the exact intersection point is stored for

further use.

By considering the intersection of the real geometry with the lattice links, inclined and

curved surfaces can be represented very well. Figure 10 compares the resulting geometry

using boundary fitting and bounce back. Each small square represents the center of a cell

or a position on the solid surface.

In the case of bounce back boundary conditions a very crude LEGO approximation is

only possible. Due to the chosen positions of the circle center (xcenter is integer, i.e. on a

lattice line whereas ycenter is between two lattice lines) the resulting representation is not

symmetric in the case of bounce back. For boundary fitting, the surface is smooth and

symmetric. Even for low resolutions (i.e. few voxels per diameter), the circle is very well

approximated.

It can be expected that in particular for low resolutions or high Reynolds numbers a large

difference between the two boundary conditions can be observed. At low resolutions, the

LEGO effect of the surface representation can be strong. At increasing Re it is also

becoming more dominant as the viscous length of the flow is decreasing and thus the flow

”feels” smaller and smaller steps which are hidden at lower Reynolds number.

Getting some feeling for the importance of an enhanced representation of the geometric

shape is a main motivation for this thesis. For all investigations the code ANB is used.

This code represents a simple and wall documented 2D lattice Boltzmann flow solver for

incompressible flows. It is available in different flavors. In the following ANB denotes

the standard version which uses the bounce back boundary conditions. ANB Interpol

denotes the version with boundary fitting boundary conditions of Bouzidi. When using

q = 1
2

for all intersections, ANB Interpol’s operation is identical to the standard ANB

version.
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a)

b)

Figure 10: Graphical presentation of the cylinder with a) ANB Interpol and b) ANB
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5 Results and Discussions

The results, explanations and discussions to the tests are presented in this chapter. First

the two program codes are juxtaposed and afterwards all investigated cases are evaluated

and compared to other experimental and numerical data found in different literature

sources.

5.1 Comparison of the Program Codes

Within this bachelor’s thesis there was the flow past a circular cylinder chosen for the

validation of the program codes, since a number of experiments and theoretical computa-

tions concerning this problem can be found in the literature, which can be used as basis

for a comparison with the present results. The purpose is to investigate and evaluate the

problem of the boundary conditions by the flow past the cylinder in a channel.

β d L H Remean St(ANB) St(ANB interpol)

0.2 20 400 100 62.5 0.2496 0.2501

0.2 20 400 100 69.7 0.2545 0.2571

0.2 20 400 100 83.3 0.2614 0.2686

0.2 20 400 100 97.2 0.2692 0.2784

0.2 20 400 100 118.7 0.2716 0.2876

0.2 20 400 100 131.9 0.2799 0.2939

0.2 20 400 100 145.7 0.2876 0.2968

Table 1: Determination of the Strouhal number for 2 series of calculations for blockage
ratios 0.2: comparison of the boundary fitting (ANB Interpol) and the bounce
back (ANB) models.

A series of test cases for β = 0.2 in the range 62.5 < Remean < 145.7 was carried

out and the results for the Strouhal number can be seen in table 1 and the graphical

interpretation of the results in figure 11. The comparison of both programs confirmed,

that for low Reynolds numbers the resolution in the geometry of the obstacle doesn’t play

an important role for the evolution of the flow behind it. Yet, its importance grows with

growing Re till a constant difference of about 0.0120 between the St values is attained

for this range of Reynolds numbers. In figure 12 one can see how different the run of

the vertical velocity component is for the two geometrical forms at higher Re. By the

LEGO-model the break-off point is more precisely defined, that’s why the oscillations

are stronger. Otherwise ANB Interpol simulates smooth surface and the break-off point

displaces.

ANB Interpol’s even surface is also the reason why the streamlines around the cylinder

run closer to its boundary compared to those in the case when the LEGO-model is imple-

mented, which are more out-lying. By the exact circular form the stream can smoothly
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Figure 11: Reynolds-Strouhal number relation for ANB and ANB Interpol

Figure 12: The time development of the v-velocity computed with ANB and
ANB Interpol in point with coordinates x = L

2 and y = H
2 +0.5 in a Cartesian

coordinate system starting in the low left corner of the computational domain.
Remean = 131.9 and β = 0.2.
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Figure 13: Isoplots of the stationary development of the u-velocity for ANB Interpol in
red and ANB in green

slip over the surface and the streamlines remain close to the body. Unlike this model,

when the LEGO geometry is displayed, this easy slipping is impeded and the stream is

reflected and repelled further from the cylinder, as shown in figure 13.

In the present work, tending to present an evaluation of improved boundary conditions by

means of the boundary-fitting model described above, all further numerical simulations

are performed with ANB Interpol.

5.2 Influence of the Domain Length

In order to verify to which extend the length of the computational domain affects the

results of the numerical simulations a series of calculations at different channel lengths

was carried out (see table 2) and the length-to-diameter ratio was plotted against the

Strouhal number (figure 14). The blockage ratio in all cases was constant β = 0.1, the

channel height and the diameter of the cylinder as well (H = 100 and d = 10), and only the

x-axis of the computational domain varied between 200 and 1600 units. As the plot shows,

the value of the Strouhal number in the case where the horizontal span of the channel

is only twice longer as its width is notedly higher than all other values, which makes us

arrive at the conclusion, that a minimum length is necessary, so that no disturbances

caused by the inflow and outflow occur. In the other three cases the value of the Strouhal

number rises slightly by increasing the length-to-diameter ratio.

For the purpose of making the difference among the factors by which the Strouhal number

changes from case to case more distinguishable we can convert those differences in percent.

From this conversion can be seen, that the Strouhal number in the second case (L : d = 40)

is around 2.69% smaller than the one in the first case (L : d = 20); the one in the third

case (L : d = 80) is only 0.59% higher than that in the second case and St from the
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d L H f Umean Remean St

10 200 100 0.0813 0.0347 69.5 0.2336

10 400 100 0.0791 0.0347 69.5 0.2280

10 800 100 0.0796 0.0347 69.5 0.2294

10 1600 100 0.0800 0.0347 69.5 0.2305

Table 2: Variation of the domain length: estimation of the Strouhal number for β = 0.1
and different length-to-diameter ratios. Horizontally the center of the cylinder is
placed at L

4 from the inlet of the channel

Figure 14: Relation between the length-to-diameter ratio and the correspondent Strouhal
number

last calculation (L : d = 160) is also only 0.52% higher compared to the previous case.

The last three values can be regarded as belonging to the same range and we can draw a

conclusion, that at least a length-to-diameter ratio of 40 is required - which is also taken

into account in the framework of this thesis.

By applying Richardson extrapolation as described in [9] the exact solution of the end

value of the Strouhal number on grid 160 was calculated. It differs from the value that we

have already obtained by the discretization error εdh in such a manner:

Φ = φh + εdh (20)

where Φ stands for the exact solution, the subscript h is the grid reference spacing and

φh is respectively the Strouhal number obtained for the length-to-diameter ratio of 160.

By the estimation of the discretization error first one needs to determine the order of the

scheme:
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p =
log(φ2h−φ4h

φh−φ2h
)

log 2
=
log(0.2294−0.2280

0.2305−0.2294
)

log 2
= 0.3479 (21)

In our case 2h stands for the Strouhal value at L
d

= 80 and 4h at L
d

= 40. Further, the

exponent p is inserted in the formula for the discretization error on this grid, which can

be approximated by:

εdh =
φh − φ2h

2p − 1
=

0.2305− 0.2294

20.3479 − 1
= 0.004 (22)

Now setting the lateral value in equation 20 will lead us to the exact Strouhal number

St = 0.2345, which is also plotted as a dashed line on figure 14.

A study devoted to the importance of the length-to-diameter ratio was also carried out

by Nishioka and Sato [24]. They ascertained, that the critical Reynolds number for vortex

shedding from the cylinder depends strongly on this ratio. If the ratio is large enough

vortex shedding takes place at lower Re. As the ratio increases the critical Reynolds

number increases as well. Their measurements indicated, that the vortex street behind

the cylinder has a spanwise wavelength of 15−20 diameters, which suggests that the vortex

shedding does not occur two-dimensionally at large length-to-diameter ratios. As the ratio

decreases the standing vortex behind the cylinder is stabilized and vortex shedding does

not take place until larger Reynolds numbers.

5.3 Influence of the Obstacle Size

Another series of computations (table 3) was accomplished which aims to give a clear

answer of the question for which diameters of the obstacle, considering the resolution

of the domain, simulations are reasonable. The diagram in figure 15 shows, that in the

interval d = 10 up to d = 40 the values of the Strouhal number differ less than 1% from

each other. Only the value for Strouhal number at d = 5 is 14% smaller than the one of

the subsequent diameter.

The same calculations were done for the case without improved boundary conditions, i.e.

with the standard bounce-back model. Right here, in the study of the resolution depen-

dence the LEGO effect is explicitly apparent. For the low diameter values the difference

in the Strouhal numbers obtained with both program codes is distinguishable. By the

time we get to d = 20 the difference is minimal and for d = 30 both programs deliver the

same result for the Strouhal number.

On the basis of the computations described above an obstacle diameter of 20 units was

preferred for all further simulation cases within the scope of this work.
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d L H f Remean St(ANB Interpol) St(ANB)

5 200 50 0.1390 68.6 0.1915 0.1897

10 400 100 0.0792 68.6 0.2282 0.2242

14 560 140 0.0569 68.6 0.2322 0.2290

20 800 200 0.0400 68.6 0.2360 0.2353

30 1200 300 0.0267 68.6 0.2377 0.2377

40 1600 400 0.0200 68.6 0.2381 -

50 2000 500 0.0160 68.6 0.2381 -

Table 3: Variation of the resolution: results of the Strouhal number at blockage ratio 0.1
and different size of the obstacle and the channel

Figure 15: Strouhal number for different diameters of the cylinder

5.4 Influence of the Blockage Ratio

Simulations for three different blockage ratios were carried out: 0.1, 0.2 and 0.4 and due

to the outcomes systemized in table 4 and graphically interpreted in figure 16 can be

deduced, that by increasing the blockage ratio the Strouhal number also shifts upwards

to higher values.

A similar phenomenon was observed by Zovatto and Pedrizzetti [38] as they analyzed the

transition from steady flow to a periodic vortex shedding regime by placing the cylinder

closer to one of the channel walls. The researchers claimed, that neither the velocity profile

nor the local irrotational acceleration which occurs only on one side of the body and is

reduced on the opposite side can explain the delay in the transition. The reason is, that

as the body approaches the wall a local acceleration and deceleration occurs on the wall

itself, this produces higher vorticity values in the wall boundary layer and rapidly grows

downstream and influences the cylinder wake. The cylinder wake is stabilized by coupling

with the wall vorticity, and so it does not oscillate in a shedding regime.
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β d L H f Umean Remean St(ANB)

0.1 20 800 200 0.0400 0.0347 69.7 0.2360

0.2 20 400 100 0.0446 0.0347 69.7 0.2571

0.4 20 200 50 0.0600 0.0347 69.7 0.33371

0.1 20 800 200 0.0429 0.0350 83.7 0.2524

0.2 20 400 100 0.0466 0.0350 83.7 0.2686

0.4 20 200 50 0.0748 0.0350 83.7 0.4121

Table 4: Variation of the blockage ratio: Strouhal number dependent on the blockage ratio

Figure 16: Results for Strouhal number as a function of the blockage ratio

This assumption is confirmed by the numeric investigation of Chen at al. [6]. In their study

the Strouhal numbers for different blockage ratios and different critical Reynolds numbers

based on the cylinder diameter are numerically estimated and the graphical interpretation

of the results are shown in figure 17 .

The increment of the diameter-to-width ratio evokes another effect of postponement of the

critical Reynolds number, which can also be seen by the present calculations in figure 19.

By the accomplishment of the numerical simulations for the series of Reynolds numbers

it is eye-catching, that the periodic detachment for blockage ratio 0.1 starts before the

oscillations for β = 0.2. A few more numerical and experimental studies confirm the

correction of this observation. The subject can be found in the numerical simulations by

Chen at al. [7], as well as in the experimental works by Coutanceau and Bouard [8] and

Shair [27].



5 Results and Discussions page 36

Figure 17: Chen et al.’s [6] results for the relation between the blockage ratio and the
critical Reynolds number based on the cylinder diameter, as described in section
2.1.

5.5 Simulations at Reynolds = 131.9

In figure 7a a cut of the time-development of the v−velocity in point with coordinates

x = L
4

from the length and y ≈ H
2

at Remean = 131.9 and β = 0.2 is presented. The

time development of the v−velocity iteself can be seen in figure 12: the first periodic

fluctuations are in sight after 65000 iterations and after 85000 iterations they attain a

constant amplitude.

A closeup look of the course of the streamlines in the obstacle’s surrounding can be seen

in figure 18. The eddies circulating behind the cylinder begin to oscillate and break off

from the cylinder. They are dragged downstream as discrete parcels of vorticity and frame

the vortex street. How are the vortices produced? The explanation offered in [10] is the

following: the fluid velocity at the surface of the cylinder must be zero and increases

rapidly away from that surface. When the main stream velocity is low enough, there is

sufficient time for this vorticity to diffuse out of the thin region near the solid surface

where it is produced and to grow into a large region of vorticity.

5.6 Former Investigation of Circular Cylinder

Among the numerous experimental and numerical studies concerning the problem of a

circular cylinder emerged in a free-stream only those will be mentioned, which contain

information about the development of the Reynolds-Strouhal number relation. Moreover,

in all but one works, that were found, the flow is considered unbounded, which doesn’t

help us much by the validation of the data for the different blockage ratio cases. That
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caused a restriction of the number of former investigations, which results are included in

the present work.

5.6.1 Yokoi’s Experimental Work

Yokoi [36] performed a number of experiments in order to investigate the vortex shedding

of a circular cylinder in a rectangular duct. His experimental apparatus for the parallel wall

case included a test section with cross sectional area size 60mm x 70mm and a mounted

brass cylinder with diameter 5mm and span length 60mm, hence the ratio between the

height of the duct and the diameter of the cylinder (blockage ratio) of around 0.07. The

investigated Reynolds numbers were in the range between Re = 100 ∼ 5000, but because

of the much more restricted scope to which the Reynolds numbers of the present thesis

belong only the few values of Yokoi up to Re = 250 are inset as basis for comparison.

Much more interesting is the conclusion of his experimental study, confirmed by a few

numerical experiments of his: he deduced, that as the Reynolds number increases, the

Strouhal number tends to increase as well, at least up to Re = 1000. Over Reynolds of

1000 the values of Strouhal number are held constant the same as Strouhal in the case of

unbounded domain.

5.6.2 The Investigations of Williamson

Williamson [31], [32], [33] is one of researcher who over a few years engaged in the inves-

tigation of the Strouhal-Reynolds number relation and the phenomenon of oblique and

parallel modes of vortex shedding. In his experimental study from 1988 [31] he explained

why a considerable difference in the vortex shedding frequency appears, which is namely

due to a change in the mode of oblique shedding. By manipulating the end conditions and

this way inducting parallel shedding he achieved a completely continuous Strouhal curve

which agrees with the oblique shedding by a cos θ relation, where θ is the oblique-shedding

angle. For a comparison with numeric results he introduced the formula

St =
−3.3265

Re
+ 0.1816 + 0.00016 ·Re (23)

which closely gives the St−Re relation.

In his later work from 1992 [33] he observed the existence of two models of formation

of sreamwise vorticity in the near wake. The first mode occurs beyond Re >180 and is

characterized by regular streamwise vortices appearing in the wake with a wavelength of

approximately three cylinder diameters. The second, beyond Re >230, corresponds to the

appearance of more irregular array of streamwise vortices with a mean spanwise wave-

length of about one cylinder diameter. Between 230 and 260 the first model dominates,

whereas at Re ≈ 260 the second model structures contain more energy - in this range

both models coexist.
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Only the results for the Strouhal number from Williamson’s experimental study [31] are in-

cluded in the present research project. The measurements have been made with a cylinder

with diameter d = 0.104 in the circular section of an openjet wind tunnel with L/d = 90.

5.6.3 Karniadakis and Triantyfillou’s Numerical Study

In their study from 1989 Karniadakis and Triantafyllou [20] tried to identify the asymp-

totic states that can develop in laminar wakes. The approach was that of a direct numerical

simulation using the spectral-element method and a high-order, weighted residual tech-

nique, which combines the accuracy of spectral methods with the flexibility in geometry of

finite-elemente schemes. In the spectral-element mesh used in the calculations very high

resolution was placed around the cylinder in order to accurately compute the boundary

layer. The cylinder geometry was represented exactly, as isoparametric expansions were

employed to map the curvilinear elements onto standard squares. The boundary condi-

tions on the computational mesh were taken to be uniform oncoming flow, potential flow

at the side “walls”, no-slip on the cylinder surface and outflow Neumann conditions at

the downstream boundary. The result for Reynolds number equal to 100 was compared

to Roshko’s [26] empirical formula and it turned out that, the value of Strouhal number

predicted by Karniadakis and Triantafyllou was about 8% higher than the experimental

one. In order to investigate the discrepancy, they tested the accuracy of the calculations

by using a mesh with much higher resolution and it yielded the same results. Afterwards

they repeated the calculation once again with different mesh, twice as wide as the the first

one - the Strouhal number was reduced by 2%. So they concluded, that the disagreement

between their computations and Roshko’s experiments can be partly attributed to the

truncation of the computational domain, or errors might also be caused in the experimen-

tal measurements, introduced by the three-dimensionality of the flow.

5.6.4 The Numerical Research of Thompson et al.

Thompson, Hourigan and Sheridan [30] undertook numerical experiment for the purpose

of computing the two- and three-dimensional wake structure behind a circular cylinder and

compared their predictions for the two-dimensional case with other experimental results.

Their governing equations were the incompressible time-dependent Navier-Stokes equa-

tions in primitive variable form and were discretized using a time-split spectral/spectral

element method as described by Karniadakis and Triantafyllou [21]. The spectral element

mesh consisted of 106 macroelements. Each element was mapped into a computational

square, and high-order Lagrangian polynomial interpolants were used to approximate the

solution variables in each directions. The inflow and outflow boundary conditions were

taken from potential flow solution. Also, the outflow boundary conditions were taken to

be ∂v
∂n

= 0 and p = 0. The domain presented a two-dimensional semi-circle which stretched

in front of the cylinder to its poles. The radius of the semi-circle is varied up to Xi = 50R,

where R is the radius of the cylinder. Behind the obstacle the mesh is elongated in a



5 Results and Discussions page 39

rectangular form with length up X0 = 42.6R. Calculations were done for different size of

the mesh and also compared to Willamson’s experimental data [31]. The results for the

large domain were within 1% of the experimental values.

5.6.5 Persillon and Braza’s Numerical Simulation

H. Persillon and M. Braza also concentrated their attention to the problem of analyzing

the transition to turbulence in a wake of a cylinder. In their article published in 1998 [25]

this is studied by a numerical simulation based on the three-dimensional full Navier-Stokes

equation for a compressible fluid in the Reynolds number range 100-300. The numerical

method is second order accurate in space and time and Neumann boundary conditions

are used at the two boundaries in spanwise direction; u = 1, v = 0 and w = 0 at

the inlet and non-reflecting (absorption) boundary conditions are specified for the outlet

downstream boundary. In the physical domain the flow was not confined; nevertheless,

fictitious external boundaries were set far from the cylinder. Also in the spanwise z-

direction the cylinder is supposed to be infinite. A striking difference in the Strouhal

number between the two- and three-dimensional cases was ascertained: for each Reynolds

number the three-dimensional Strouhal number is lower than the two-dimensional one,

which is in a very good agreement with the experiments of Williamson (1998) [31], who

has shown discontinuities in the St-Re-relation.

5.6.6 Zovatto and Pedrizzetti’s Study of Cylinder Between Parallel Walls

In 2001 Zovatto and Pedrizzetti released an article [38] which topic is the laminar flow

inside a channel in the presence of circular cylinder. The channel is plane with rectilinear

walls separated by a distance h, the diameter of the cylinder is d and its positions are

defined by the gap ∆, the minimal distance from the cylinder surface to the nearest wall.

The fluid is considered incompressible, following the steady average velocity Umean inside

the channel. The problem is made dimensionless by taking h as the unit length, h
Umean

as

the unit time and ρh3 as the unit mass. The problem is governed by three dimensionless

parameters: the channel Reynolds number Rechannel = Umeanh
ν

, the blockage ratio β and

the gap parameter γ = ∆
d

. In order to ba able to compare Zovatto and Pedrizzetti’s results

with those from the present study we are interested only in the case, where the cylinder

is placed in the middle of the channel, which means that the gap parameter will take its

maximal value γ = 2 for the fixed value of the blockage ratio β = 0.2 used in that study.

Later on they introduced another cylinder-based Reynolds number

Recyl = ReUcylβ (24)

where Ucyl is the average velocity in front of the cylinder far upstream and

Ucyl(γ) = −6β2γ2 + 6β(1− β)γ + β(3− 2β) = 1, 48 ≈ 3

2
(25)
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When one inserts this value in formula 24 this would mean that the velocity is multiplied

by factor 3
2

and this is nothing but the free-stream velocity U∞. And we know that we

have to multiply the free-stream velocity with 2
3

in order to obtain the mean velocity

Umean. This way the terms 3
2

and 2
3

cancel, we only have to multiply Rechannel with the

blockage ratio 0.2 and it yields the Reynolds number on terms of the mean velocity in the

channel.

The authors reported a table where the dimensionless period T was presented as a function

of the channel Reynolds number and the gap parameter. By means of equation 24 and

the mathematical operations described above we can easily convert the released values of

Reynolds to Remean. On the other hand they defined the Strouhal number as

St =
β

UcylT
(26)

so we are provided with all the data in order to calculate the Strouhal numbers and thus

setting the St− Recyl relation. The last point we should take into account is that in the

expression for the Strouhal number the velocity should be multiplied by 2
3

in order to set

in the average velocity. After all this a Strouhal number range between St ≈ 0.23 and

St ≈ 0.3 is obtained, which is in best accordance with the results from the present work.

5.6.7 Juxtaposition of the Results

The parameters and outputs of the cases investigated within the scope of this bachelor’s

thesis are reported in table 5. Because of the restricted number of studies handling with

channel confined by walls, we concentrated on the computations with relatively small

blockage ratios — 0.1 and 0.2, where the distance between the cylinder and the wall is as

large as possible and thus the investigated cases are relatively close to the simulations or

experiments with unbounded flows, which should help us by the validation of the obtained

data.

In the graphical evaluation of the data in figure 19 one can clearly see, that although the

results from the different studies deliver so different values for the Strouhal number, they

all have something in common — the run of the curves representing the the St−Re rela-

tion. In this sense the curves obtained in the present thesis can be considered as a parallel

displacement of some of the other curves to a higher Strouhal number scope. And the

reason for this displacement can be found in the specification of the boundary conditions

of the domain. While in all other studies, apart from the one by Zovatto and Pedrizzetti,

the domain is unbounded, the present work is characterized by the introduction of chan-

nel walls, which evoke the establishment of a parabolic velocity profile and thus exert

influence on the u-velocity value by the calculation of the Strouhal number. The Strouhal

numbers obtained on the basis of the data reported by Zovatto and Pedrizzetti belong to

exactly the same range as the present results.

Similar investigations dealing with the vortex shedding behind a square obstacle [37]

showed, that dependence of the blockage ratio exists - with increasing diameter-to-height
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β d L H f Umean Remean St

0.1 20 800 200 0.0429 0.0340 54.4 0.2206

0.1 20 800 200 0.0400 0.0340 68.0 0.2353

0.1 20 800 200 0.0429 0.0340 81.6 0.2524

0.1 20 800 200 0.0430 0.0340 95.2 0.2547

0.1 20 800 200 0.0450 0.0340 112.2 0.2646

0.1 20 800 200 0.0469 0.0340 125.8 0.2756

0.1 20 800 200 0.04832 0.0340 142.8 0.2842

0.2 20 400 100 0.0434 0.0347 62.5 0.2501

0.2 20 400 100 0.0446 0.0347 69.7 0.2571

0.2 20 400 100 0.0466 0.0347 83.3 0.2686

0.2 20 400 100 0.0483 0.0347 97.2 0.2784

0.2 20 400 100 0.0499 0.0347 118.7 0.2876

0.2 20 400 100 0.0510 0.0347 131.9 0.939

0.2 20 400 100 0.0515 0.0347 145.7 0.2968

Table 5: Table of the test cases - estimation of the Strouhal number for 2 series of calcu-
lations for blockage ratios 0.1 and 0.2

ratio higher Strouhal numbers are set. We don’t have the necessary database at our

disposal for such comparison in the case of a circular cylinder, but we drew the same

conclusion in our study in section 5.4 and this can be also seen in figure 19.

Regarding the magnitude of Strouhal number, basically there are no considerable differ-

ences among the included publications, the only small exception is Yokoi’s experimental

data. By the introduction of Persillon and Braza’s results it was mentioned, that they

observed significant distinction between the two- and three-dimensional case and that the

3D simulations yielded lower Strouhal numbers. This could explain why Yokoi’s values,

fruit of a three-dimensional experiment lie under the numerical curves. Moreover, only

few values from Yokoi belong to our restricted Re range and the probability of wrong

inferences because of insufficient information is very high.

Since in the referred studies the information about the evaluation methods and the conver-

gence behavior in the numeric computations is not comprehensive, it’s hard to determine

their accuracy and their authenticity.



5 Results and Discussions page 42

t = t0 t = t0 + 1
5
T

t = t0 + 2
5
T t = t0 + 3

5
T

t = t0 + 4
5
T t = t0 + 5

5
T

Figure 18: Streamline plot of the flow close to the cylinder presenting one period in the
vortex appearance, development and detachment at Remean = 131.9
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Figure 19: Graphical presentation of former studies compared with the results for Strouhal
number from the present work. Both Reynolds number and Strouhal number
are function of the mean inflow velocity Umean which is approximately 2

3 of the
specified velocity Umax.
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6 Summary

In this bachelor’s thesis, the problem of the boundary conditions in the case of flow past

a circular cylinder in a channel was examined. For this purpose an alternative concept

introducing the boundary-fitting mechanism in the presence of boundaries and an exact

circular form were implemented in the program code ANB Interpol and evaluated on the

basis of comparisons with the results from former investigations of the same flow-obstacle

configuration.

The work starts with two chapters that draw one’s attention to the theory behind the

problem of a flow past a circular cylinder, the physical and numerical background. First the

relevant dimensionless numbers, the flow regimes behind a circular obstacle, the influence

of the channel walls and the computational domain on the flow were discussed. After that

the lattice Boltzmann approach was introduced in the next chapter.

The next step was to collate the program code with its predecessor, the algorithm of

depiction of the circular form with ANB Interpol was briefly presented, accompanied

by illustration of the geometric models. The reasons for the different results that both

codes yielded were described and explained — by means of the two different geometric

presentations and boundary condition approaches that both programs suggest, conclusions

were drawn and predictions can be made about the development of the vortex street

behind the cylinder. Different run of the streamlines around the obstacles was observed

and explained, as well as the results for the Strouhal number computed with both program

codes were systemized.

Further simulations were carried out with ANB Interpol and the influence of different

parameters on the establishment and evolution of vortex shedding were evaluated and

compared with other studies.

The first investigated parameter was the length of the channel included in the diameter-

to-length ratio, which investigation showed, that there is a minimal ratio which should be

selected by the simulations in order to obtain reasonable results. This ratio is of interest

also for the critical Reynolds number: the larger the diameter-to-length ratio is, the sooner

the periodic detachments behind the cylinder start.

The size of the cylinder was the next subject of investigations. For it the same deduction is

valid - considering the resolution of the domain a minimal diameter of the circle d = 10 is

required, thereby one should take into account, that the differences between the Strouhal

numbers obtained by the use of the two program codes depend on the resolution — the

worse the resolution is, i.e. the smaller the diameter of the cylinder is, the more obvious

this difference is.

Finally, the importance of the blockage ratio by the different test cases was discussed.

Although in none of the former works dealing with circular cylinder this ratio was studied,

the results from the present study could be validated by referring to data achieved by

the evaluation of a flow past square obstacle [37]. The present computations once again
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confirmed, that by raising the blockage ratio the critical Reynolds number the values of

the Strouhal number rise too.

Despite the simple configuration of the problem and despite the numerous works on the

topic, the results that can be found are not sufficient. In this sense future experimental

and numerical investigations of the flow past circular cylinder can be performed, especially

in the case when channel walls confine the domain.
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