Quiz 8, Physics 2a, Nov 19 2010 Double check that you bubble in your code number correctly. If there's a mistake, your score will be lowered –as a penalty.

In case you forgot to write these down in your formula sheet:

$$I = \begin{cases} \frac{1}{1^2} ML^2 & \text{rod through center} \\ \frac{1}{3} ML^2 & \text{rod through end} \\ \frac{1}{2} MR^2 & \text{solid cylinder} \\ \frac{2}{5} MR^2 & \text{solid sphere} \\ \frac{2}{3} MR^2 & \text{thin walled hollow sphere.} \end{cases}$$

VERSION A

- 1. A bowling ball rolls up a ramp, without slipping. Let \hat{i} be a unit vector pointing in the horizontal direction of the ball's motion. Let \hat{j} be a unit vector in the vertical direction, pointing up. As usual, $\hat{k} = \hat{i} \times \hat{j}$. Define $\omega = |\vec{\omega}|$ and $\alpha = |\vec{\alpha}|$ (where, as usual, $|\vec{v}|$ denotes the magnitude of a vector \vec{v}). Which of the following is true?
 - (a) $\vec{\omega} = \omega \hat{k}, \ \vec{\alpha} = \alpha \hat{k}.$
 - (b) $\vec{\omega} = -\omega \hat{k}, \ \vec{\alpha} = \alpha \hat{k}.$
 - (c) $\vec{\omega} = \omega \hat{k}, \ \vec{\alpha} = -\alpha \hat{k}.$
 - (d) $\vec{\omega} = -\omega \hat{k}, \ \vec{\alpha} = -\alpha \hat{k}.$
- 2. Same setup. Which forces exert a **non-zero** torque on the ball while it is rolling up the ramp?
 - (a) Friction only.
 - (b) Friction and gravity.
 - (c) Friction and gravity and the normal force.
 - (d) Gravity and the normal force.
- 3. Same setup. Suppose that the bowling ball was initially rolling without slipping horizontally at $\vec{v} = v\hat{i}$, with v = 10m/s, before it gets to the ramp. Approximately how high up the ramp (in the vertical direction) will the ball go, assuming that it continues to roll without slipping?
 - (a) 7 meters
 - (b) 5 meters
 - (c) 10 meters
 - (d) 3 meters
- 4. Same setup, again with a bowling ball initially rolling without slipping horizontally at $\vec{v} = 10m/s\hat{i}$ before it gets to the ramp. But now suppose that the ramp is coated with a special material (BAM) making the ramp frictionless. Now approximately how high up the frictionless ramp does the ball go?
 - (a) 7 meters
 - (b) 5 meters
 - (c) 10 meters
 - (d) 3 meters

- 5. Same setup, but replace the bowling ball with a **thin-walled hollow** cylinder, and take the ramp to have friction, so the cylinder rolls up it **without slipping**. Now approximately how high up does the cylinder go?
 - (a) 7 meters
 - (b) 5 meters
 - (c) 10 meters
 - (d) 3 meters
- 6. A 4kg bunch of bananas is attached to an approximately massless string, which winds around a wheel of mass 5kg and radius 0.5m. The wheel has a peculiar, non-uniform mass distribution, and its moment of inertia is $1.0 kg m^2$. As the mass falls, the string turns the wheel, without slipping. What is the approximate downward acceleration of the bananas?
 - (a) $5m/s^2$.
 - (b) $3m/s^2$.
 - (c) $7m/s^2$.
 - (d) $9m/s^2$.
- 7. Same setup. What is the approximate tension in the string?
 - (a) 28N
 - (b) 20N
 - (c) 4N
 - (d) 12N.
- 8. A man, with his arms at his sides, is spinning on a light frictionless turntable. When he extends his arms:
 - (a) his angular velocity increases.
 - (b) his angular velocity remains the same.
 - (c) his rotational kinetic energy increases.
 - (d) his angular momentum remains the same.
- 9. A frictionless turntable, with moment of inertia $2kgm^2$, is initially spinning at 30 radians per second. A 4kg lump of clay is dropped from above, and it hits the turntable at a distance of 0.5m from the rotational axis, where it sticks. What is the final angular speed of the turntable and clay?
 - (a) 30 radians per second.

- (b) 15 radians per second.
- (c) 12 radians per second
- (d) 20 radians per second
- 10. Same setup. Let K_i be the initial rotational kinetic energy of the turntable, and let K_f be the final rotational kinetic energy of the turntable plus stuck clay. $K_i K_f =$ (a) 0
 - (b) 300J
 - (c) 900J
 - (d) 500J.
- 11. A force of $\vec{F} = (2\hat{i} + 1\hat{j})N$ is applied to the point x = 3m, y = 4m. The torque is (a) $11\hat{k}N$ m
 - (b) $-11\hat{k}N\ m$
 - (c) $5\hat{k}N m$
 - (d) $-5\widehat{k}N\ m$
- 12. A grindstone in the shape of a solid disk has mass 80kg and radius 0.5m. It is initially rotating at 20 radians per second. You press an ax against the rim with a normal force of 100N and the grindstone comes to rest in 5s. What is the coefficient of friction between the ax and the grindstone (ignore friction in the bearings).
 - (a) 0.8
 - (b) 0.4
 - (c) 0.2
 - (d) 0.6.
- 13. How much energy was lost to heat, from the initial time to the final time when the wheel has stopped?
 - (a) 2000J
 - (b) 1000J
 - (c) 4000J
 - (d) none of the above.
- 14. A solid uniform disk, a solid uniform sphere, and a hollow sphere start from rest at the same height and roll down a ramp. They reach the bottom in the order:
 - (a) disk, solid sphere, hollow sphere.
 - (b) solid sphere, hollow sphere, disk.
 - (c) solid sphere, disk, hollow sphere.
 - (d) hollow sphere, solid sphere, disk.