Physics 2a, Nov 17, lecture 25

⭐Reading: chapters 9 and 10.

• Last time, Examples of moments of inertia:

\[
I = \begin{cases}
\frac{1}{12}ML^2 & \text{rod through center} \\
\frac{1}{3}ML^2 & \text{rod through end} \\
\frac{1}{3}MR^2 & \text{solid cylinder} \\
\frac{2}{5}MR^2 & \text{solid sphere} \\
\frac{2}{3}MR^2 & \text{thin walled hollow sphere}.
\end{cases}
\]

For cylinder or sphere of radius \(R\), write \(I = cMR^2\), and note that \(c_{\text{hollow}} > c_{\text{solid}}\) and \(c_{\text{cylinder}} > c_{\text{sphere}}\) make intuitive sense, since bigger \(c\) means more mass farther from the axis of rotation. (Parallel axis result: the moment around an axis parallel to, and at a distance \(d\) from, one going through the CM is \(I_p = I_{cm} + Md^2\). For example, the \(I\) of a rod through an end vs through the center are related this way.)

Race round rigid bodies down an incline plane, which wins? Use conservation of energy. \(E_{initial} = Mgh\). \(E_{final} = \frac{1}{2}Mv_{cm}^2 + \frac{1}{2}I\omega^2\), and \(\omega = v_{cm}/R\) (rolling without slipping), so \(E_{final} = \frac{1}{2}(1+c)Mv_{cm}^2\), so \(v_{cm} = \sqrt{2gh/(1+c)}\). Smaller \(I\) object wins.

Makes sense, less energy taken up with rotation means more going into velocity. Writing \(h = d\sin\beta\) where \(d\) is the distance traveled along the slope shows that the acceleration along the slope is \(a = g\sin\beta/(1+c)\).

Unwinding cable example. Mass \(m\) on string, wrapped around cylinder with mass \(M\) and radius \(R\). Mass drops height \(h\). Find it’s speed.

\(mgh = \frac{1}{2}mv^2 + \frac{1}{2}I(v/R)^2\), so \(v = \sqrt{2gh/(1 + I/mR^2)}\), with \(I = \frac{1}{2}MR^2\). Note that \(v^2 = 2ah\), with \(a = g/(1 + I/mR^2)\).

• Let’s now reconsider the above examples, as illustrations of the use of torque, \(\tau = \vec{r} \times \vec{F}\).

Consider first the unwinding cable example. The downward force on the mass is \(mg - T = ma\). The tension \(T\) provides a torque \(\tau = TR = Ia\) on the cylinder. Finally, \(a = R\alpha\). Solve these to get \(a = g/(1 + I/mR^2)\).

Now consider the rolling body example. The force parallel to the slope is \(Mg\sin\beta - f_f = Ma\). The torque around the middle is \(\tau = Rf_f = I\alpha\). Setting \(a = \alpha R\) for non-slipping, get \(g\sin\beta = a(1+c)\), where \(c = I/MR^2\), and this agrees with the acceleration found last time using energy considerations. Note that \(f_f = cMg\sin\beta/(1+c)\) and \(n = Mg\cos\beta\), so need minimum friction coefficient \(\mu_s = \frac{c}{1+c}\tan\beta\).
• More on angular momentum, \(\vec{L} = \sum_i \vec{r}_i \times \vec{p}_i = \vec{L}_{cm} + I \vec{\omega} \), and examples. Note that it depends on choice of origin. As seen in Monday’s lecture, \(\vec{\tau} = \frac{d\vec{L}}{dt} \).

If no torque, \(\vec{\tau} = 0 \), angular momentum is conserved, \(\vec{L} = \text{constant} \).

Two objects, \(A \) and \(B \), since \(\vec{F}_{A \rightarrow B} = -\vec{F}_{B \rightarrow A} \), we see \(\vec{\tau}_{A \rightarrow B} = -\vec{\tau}_{B \rightarrow A} \), equal and opposite torques, so \(\frac{d}{dt}(\vec{L}_A + \vec{L}_B) = 0 \). In general, Newton’s 3rd law \(\rightarrow \vec{\tau}_{\text{total}} = \vec{\tau}_{\text{external}} \), which vanishes for a closed system. So closed systems have conserved angular momentum. At a fundamental level, angular momentum is always conserved, though it can flow in and out of a system. Conservation of angular momentum is a deep principle, like conservation of energy and conservation of momentum. (They are related to symmetries: energy to time translations, momentum to space translations, and angular momentum to rotational invariance).

• Spinning with dumbbells, bring them in and use conservation of \(L \) to find \(\omega_f \). Compare \(K_f - K_i \) to work done.

• Bullet in door example. Door width \(d \) and mass \(M \). Bullet of mass \(m \) and velocity \(v \) hits at distance \(\ell \) from hinge. Using conservation of \(\vec{L} \), get \(L_z = mv\ell \) before, and \(\vec{L} = I \vec{\omega} \) after, where \(I = \frac{1}{3}Md^2 + ml^2 \). Equating gives \(\omega = \frac{mv\ell}{I} \). Note \(K_{\text{before}} = \frac{1}{2}mv^2 \) and \(K_{\text{after}} = \frac{1}{2}I\omega^2 \), and \(K_{\text{before}} - K_{\text{after}} \) is positive, as expected, and equal to the energy lost to heat in the inelastic collision of bullet and door.

• Gyroscopes and precession. The weight of the gyro leads to \(\vec{\tau} = \vec{r} \times \vec{w} \). This is perpendicular to \(\vec{L} \) (since \(\vec{L} \) is parallel to \(\vec{r} \)), so \(\frac{d}{dt}(\vec{L} \cdot \vec{L}) = 0 \), the magnitude of \(\vec{L} \) is unchanged, but it’s direction rotates in a circle. The precession angular speed is \(\Omega = \frac{|\vec{d}|}{|\vec{L}|/dt = Mgr/I\omega} \).