

Physics 2A Lecture 2: Sept 27, 2010

Components Of A Vector

Multiplying Vectors: Vector Product

- In mechanics, can express many physical relationships by using vector product
- Vector product is not like multiplying #s
- Two different kind of vector products
 - -scalar product yields a value that's scalar
 - -vector product yields another vector !

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

$$\text{verify now !}$$

$$\hat{i} \times \hat{j} = -\hat{j} \times \hat{i} = \hat{k}$$

$$\hat{j} \times \hat{k} = -\hat{k} \times \hat{j} = \hat{i}$$

$$\hat{k} \times \hat{i} = -\hat{i} \times \hat{k} = \hat{j}$$

Vector Product of Two 3-D Vectors

$$\vec{A} \times \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \times (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$$

 $= A_x \hat{i} \times B_x \hat{i} + A_x \hat{i} \times B_y \hat{j} + A_x \hat{i} \times B_z \hat{k}$
 $+ A_y \hat{j} \times B_x \hat{i} + A_y \hat{j} \times B_y \hat{j} + A_y \hat{j} \times B_z \hat{k}$
 $+ A_z \hat{k} \times B_x \hat{i} + A_z \hat{k} \times B_y \hat{j} + A_z \hat{k} \times B_z \hat{k}$
rewrite the individual terms as $A_x \hat{i} \times B_y \hat{j} = (A_x B_y) \hat{i} \times \hat{j}$, and so on.
 $\vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j} + (A_x B_y - A_y B_x) \hat{k}$
the components of $\vec{C} = \vec{A} \times \vec{B}$ are given by
 $C_x = A_y B_z - A_z B_y C_y = A_z B_x - A_x B_z C_z = A_x B_y - A_y B_x$

Vector Prod	luct of Two 3-D Vecto	ors			
	If $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_y \hat{j}$	$-A_z\hat{k}$			
	and				
	$\vec{\mathbf{B}} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$				
	then				
In the Determinant	\hat{i}	ĵ ĥ			
form	$\vec{C} = \vec{A} \times \vec{B} = \begin{vmatrix} A_x \end{vmatrix}$	A_{y} A			
	B_x	$B_y = B$			
$C_x = A_y B_z - A_z B_y$, $C_y = A_z B_z$	$B_x - A_x B_z, C_z = A_x B_y - A_y B_x'$				

Chapter 2: Motion In a Straight Line

- Study of Mechanics: Study of relationships among force, matter and motion
 - -Kinematics: study of motion of objects
 - -Dynamics: relation of motion to its causes
- Simplest form of motion: object moving along a straight line.
 - Describe object's in motion by a <u>point</u> particle
 - Measure its displacement in direction x Vs time t, describe motion in terms of
 - \rightarrow its speed, velocity & acceleration

Some Velocities					
A snail's pace A brisk walk Fastest human Running cheetah Fastest car	10 ⁻³ m/s 2 m/s 11 m/s 35 m/s 341 m/s				
Random motion of air molecul Fastest airplane Orbiting communications satel Electron orbiting in a hydrogen Light traveling in a vacuum	tes 500 m/s 1000 m/s 1000 m/s 1000 m/s 3000 m/s $2 \times 10^6 \text{ m/s}$ $3 \times 10^8 \text{ m/s}$				

Instantaneous Velocity v_x

- Definition: Velocity of an object at any specific instant of time or location
 - Is the limit of average velocity as the time interval $\Delta t \rightarrow 0$

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

 v_{av-x} & v_x are both vectors, can be + or depending on the change in displacement Refer to v_x as velocity

Speed, the magnitude of the velocity vector, is a scalar

Scale Of Things: Universe By Orders of Magnitude

Size or Distance	(m)	Mass	(kg)	Time Interval	(s)
Proton	10^{-15}	Electron	10 ⁻³⁰	Time for light to cross nucleus	10 ⁻²³
Atom	10^{-10}	Proton	10^{-27}	Period of visible light radiation	10^{-15}
Virus	10^{-7}	Amino acid	10^{-25}	Period of microwaves	10^{-10}
Giant amoeba	10^{-4}	Hemoglobin	10 ⁻²²	Half-life of muon	10^{-6}
Walnut	10^{-2}	Flu virus	10^{-19}	Period of highest audible sound	10^{-4}
Human being	10^{0}	Giant amoeba	10^{-8}	Period of human heartbeat	10^{0}
Highest mountain	10^{4}	Raindrop	10^{-6}	Half-life of free neutron	10 ³
Earth	107	Ant	10^{-4}	Period of Earth's rotation	10 ³
Sun	10 ⁹	Human being	10 ²	Period of Earth's revolution	
Distance from Earth		Saturn V rocket	106	around the Sun	107
to the Sun	1011	Pyramid	10 ¹⁰	Lifetime of human being	10 ⁹
Solar system	1013	Earth	1024	Half-life of plutonium-239	1012
Distance to nearest star	1016	Sun	1030	Lifetime of mountain range	1015
Milky Way galaxy	1021	Milky Way galaxy	1041	Age of Earth	1017
Visible universe	1026	Universe	1052	Age of universe	1018

Th		le of Things	
TABLE 1.5 Some approximate	lengths		
	Length (m)		
Circumference of the earth	4×10^7	TABLE 1.6 Some approx	imate masses
New York to Los Angeles	5×10^{6}		Mass (kg)
Distance you can drive in 1 hour	1×10^5	Large airliner	1 × 10 ⁵
Altitude of jet planes	1×10^4	Small car	1000
Distance across a college campus	1000	Large human	100
Length of a football field	100	Medium-size dog	10
Length of a classroom	10	Science textbook	1
Length of your arm	1	Apple	0.1
Width of a textbook	0.1	Pencil	0.01
Length of your little fingernail	0.01	Raisin	1×10^{-3}
Diameter of a pencil lead	1×10^{-3}	Fly	1×10^{-4}
Thickness of a sheet of paper	1×10^{-4}		
Diameter of a dust particle	1×10^{-5}		