
Chapter 15

Special Relativity

For an extraordinarily lucid, if characteristically brief, discussion, see chs. 1 and 2 of L. D.
Landau and E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical Physics,

vol. 2).

15.1 Introduction

All distances are relative in physics. They are measured with respect to a fixed frame of

reference. Frames of reference in which free particles move with constant velocity are called
inertial frames. The principle of relativity states that the laws of Nature are identical in
all inertial frames.

15.1.1 Michelson-Morley experiment

We learned how sound waves in a fluid, such as air, obey the Helmholtz equation. Let us
restrict our attention for the moment to solutions of the form φ(x, t) which do not depend
on y or z. We then have a one-dimensional wave equation,

∂2φ

∂x2
=

1

c2
∂2φ

∂t2
. (15.1)

The fluid in which the sound propagates is assumed to be at rest. But suppose the fluid
is not at rest. We can investigate this by shifting to a moving frame, defining x′ = x− ut,
with y′ = y, z′ = z and of course t′ = t. This is a Galilean transformation. In terms of the
new variables, we have

∂

∂x
=

∂

∂x′
,

∂

∂t
= −u ∂

∂x′
+

∂

∂t′
. (15.2)

The wave equation is then
(

1− u2

c2

)
∂2φ

∂x′2
=

1

c2
∂2φ

∂t′2
− 2u

c2
∂2φ

∂x′ ∂t′
. (15.3)
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Clearly the wave equation acquires a different form when expressed in the new variables
(x′, t′), i.e. in a frame in which the fluid is not at rest. The general solution is then of the
modified d’Alembert form,

φ(x′, t′) = f(x′ − cRt′) + g(x′ + cLt
′) , (15.4)

where cR = c − u and cL = c + u are the speeds of rightward and leftward propagating
disturbances, respectively. Thus, there is a preferred frame of reference – the frame in
which the fluid is at rest. In the rest frame of the fluid, sound waves travel with velocity c
in either direction.

Light, as we know, is a wave phenomenon in classical physics. The propagation of light is
described by Maxwell’s equations,

∇ ·E = 4πρ ∇×E = −1

c

∂B

∂t
(15.5)

∇ ·B = 0 ∇×B =
4π

c
j +

1

c

∂E

∂t
, (15.6)

where ρ and j are the local charge and current density, respectively. Taking the curl of
Faraday’s law, and restricting to free space where ρ = j = 0, we once again have (using a
Cartesian system for the fields) the wave equation,

∇2E =
1

c2
∂2E

∂t2
. (15.7)

(We shall discuss below, in section 15.8, the beautiful properties of Maxwell’s equations
under general coordinate transformations.)

In analogy with the theory of sound, it was assumed prior to Einstein that there was in
fact a preferred reference frame for electromagnetic radiation – one in which the medium
which was excited during the EM wave propagation was at rest. This notional medium was
called the lumineferous ether . Indeed, it was generally assumed during the 19th century
that light, electricity, magnetism, and heat (which was not understood until Boltzmann’s
work in the late 19th century) all had separate ethers. It was Maxwell who realized that
light, electricity, and magnetism were all unified phenomena, and accordingly he proposed
a single ether for electromagnetism. It was believed at the time that the earth’s motion
through the ether would result in a drag on the earth.

In 1887, Michelson and Morley set out to measure the changes in the speed of light on earth
due to the earth’s movement through the ether (which was generally assumed to be at rest
in the frame of the Sun). The Michelson interferometer is shown in fig. 15.1, and works as
follows. Suppose the apparatus is moving with velocity u x̂ through the ether. Then the
time it takes a light ray to travel from the half-silvered mirror to the mirror on the right
and back again is

tx =
ℓ

c+ u
+

ℓ

c− u =
2ℓc

c2 − u2
. (15.8)
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Figure 15.1: The Michelson-Morley experiment (1887) used an interferometer to effectively
measure the time difference for light to travel along two different paths. Inset: analysis for
the y-directed path.

For motion along the other arm of the interferometer, the geometry in the inset of fig. 15.1

shows ℓ′ =
√
ℓ2 + 1

4u
2t2y, hence

ty =
2ℓ′

c
=

2

c

√
ℓ2 + 1

4u
2t2y ⇒ ty =

2ℓ√
c2 − u2

. (15.9)

Thus, the difference in times along these two paths is

∆t = tx − ty =
2ℓc

c2
− 2ℓ√

c2 − u2
≈ ℓ

c
· u

2

c2
. (15.10)

Thus, the difference in phase between the two paths is

∆φ

2π
= ν∆t ≈ ℓ

λ
· u

2

c2
, (15.11)

where λ is the wavelength of the light. We take u ≈ 30 km/s, which is the earth’s orbital
velocity, and λ ≈ 5000 Å. From this we find that ∆φ ≈ 0.02 × 2π if ℓ = 1m. Michelson
and Morley found that the observed fringe shift ∆φ/2π was approximately 0.02 times the
expected value. The inescapable conclusion was that the speed of light did not depend on
the motion of the source. This was very counterintuitive!
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Figure 15.2: Experimental setup of Alvager et al. (1964), who used the decay of high energy
neutral pions to test the source velocity dependence of the speed of light.

The history of the development of special relativity is quite interesting, but we shall not have
time to dwell here on the many streams of scientific thought during those exciting times.
Suffice it to say that the Michelson-Morley experiment, while a landmark result, was not the
last word. It had been proposed that the ether could be dragged, either entirely or partially,
by moving bodies. If the earth dragged the ether along with it, then there would be no
ground-level ‘ether wind’ for the MM experiment to detect. Other experiments, however,
such as stellar aberration, in which the apparent position of a distant star varies due to the
earth’s orbital velocity, rendered the “ether drag” theory untenable – the notional ‘ether
bubble’ dragged by the earth could not reasonably be expected to extend to the distant
stars.

A more recent test of the effect of a moving source on the speed of light was performed
by T. Alv̊ager et al., Phys. Lett. 12, 260 (1964), who measured the velocity of γ-rays
(photons) emitted from the decay of highly energetic neutral pions (π0). The pion energies
were in excess of 6 GeV, which translates to a velocity of v = 0.99975 c, according to special
relativity. Thus, photons emitted in the direction of the pions should be traveling at close
to 2c, if the source and photon velocities were to add. Instead, the velocity of the photons
was found to be c = 2.9977± 0.0004× 1010 cm/s, which is within experimental error of the
best accepted value.

15.1.2 Einsteinian and Galilean relativity

The Principle of Relativity states that the laws of nature are the same when expressed in
any inertial frame. This principle can further be refined into two classes, depending on
whether one takes the velocity of the propagation of interactions to be finite or infinite.
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Figure 15.3: Two reference frames.

The interaction of matter in classical mechanics is described by a potential function U(r1, . . . , rN ).

Typically, one has two-body interactions in which case one writes U =
∑

i<j U(ri, rj). These
interactions are thus assumed to be instantaneous, which is unphysical. The interaction of
particles is mediated by the exchange of gauge bosons, such as the photon (for electro-
magnetic interactions), gluons (for the strong interaction, at least on scales much smaller
than the ‘confinement length’), or the graviton (for gravity). Their velocity of propagation,
according to the principle of relativity, is the same in all reference frames, and is given by
the speed of light, c = 2.998 × 108 m/s.

Since c is so large in comparison with terrestrial velocities, and since d/c is much shorter
than all other relevant time scales for typical interparticle separations d, the assumption
of an instantaneous interaction is usually quite accurate. The combination of the principle
of relativity with finiteness of c is known as Einsteinian relativity. When c = ∞, the
combination comprises Galilean relativity:

c <∞ : Einsteinian relativity

c =∞ : Galilean relativity .

Consider a train moving at speed u. In the rest frame of the train track, the speed of
the light beam emanating from the train’s headlight is c + u. This would contradict the
principle of relativity. This leads to some very peculiar consequences, foremost among them
being the fact that events which are simultaneous in one inertial frame will not in general
be simultaneous in another. In Newtonian mechanics, on the other hand, time is absolute,
and is independent of the frame of reference. If two events are simultaneous in one frame
then they are simultaneous in all frames. This is not the case in Einsteinian relativity!

We can begin to apprehend this curious feature of simultaneity by the following Gedanken-

experiment (a long German word meaning “thought experiment”)1. Consider the case in
fig. 15.3 in which frame K ′ moves with velocity u x̂ with respect to frame K. Let a source
at S emit a signal (a light pulse) at t = 0. In the frame K ′ the signal’s arrival at equidistant
locations A and B is simultaneous. In frame K, however, A moves toward left-propagating

1Unfortunately, many important physicists were German and we have to put up with a legacy of long
German words like Gedankenexperiment , Zitterbewegung , Brehmsstrahlung , Stosszahlansatz , Kartoffelsalat ,
etc.
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emitted wavefront, and B moves away from the right-propagating wavefront. For classical
sound, the speed of the left-moving and right-moving wavefronts is c∓u, taking into account
the motion of the source, and thus the relative velocities of the signal and the detectors
remain at c. But according to the principle of relativity, the speed of light is c in all frames,
and is so in frame K for both the left-propagating and right-propagating signals. Therefore,
the relative velocity of A and the left-moving signal is c+ u and the relative velocity of B
and the right-moving signal is c − u. Therefore, A ‘closes in’ on the signal and receives it
before B, which is moving away from the signal. We might expect the arrival times to be
t∗
A

= d/(c+ u) and t∗
B

= d/(c− u), where d is the distance between the source S and either
detector A or B in the K ′ frame. Later on we shall analyze this problem and show that

t∗
A

=

√
c− u
c+ u

· d
c

, t∗
B

=

√
c+ u

c− u ·
d

c
. (15.12)

Our näıve analysis has omitted an important detail – the Lorentz contraction of the distance
d as seen by an observer in the K frame.

15.2 Intervals

Now let us express mathematically the constancy of c in all frames. An event is specified
by the time and place where it occurs. Thus, an event is specified by four coordinates,
(t, x, y, z). The four-dimensional space spanned by these coordinates is called spacetime.

The interval between two events in spacetime at (t1, x1, y1, z1) and (t2, x2, y2, z2) is defined
to be

s12 =

√
c2(t1 − t2)2 − (x1 − x2)

2 − (y1 − y2)
2 − (z1 − z2)2 . (15.13)

For two events separated by an infinitesimal amount, the interval ds is infinitesimal, with

ds2 = c2 dt2 − dx2 − dy2 − dz2 . (15.14)

Now when the two events denote the emission and reception of an electromagnetic signal,
we have ds2 = 0. This must be true in any frame, owing to the invariance of c, hence since
ds and ds′ are differentials of the same order, we must have ds′2 = ds2. This last result
requires homogeneity and isotropy of space as well. Finally, if infinitesimal intervals are
invariant, then integrating we obtain s = s′, and we conclude that the interval between two

space-time events is the same in all inertial frames.

When s212 > 0, the interval is said to be time-like. For timelike intervals, we can always
find a reference frame in which the two events occur at the same locations. As an example,
consider a passenger sitting on a train. Event #1 is the passenger yawning at time t1. Event

#2 is the passenger yawning again at some later time t2. To an observer sitting in the train
station, the two events take place at different locations, but in the frame of the passenger,
they occur at the same location.

When s212 < 0, the interval is said to be space-like. Note that s12 =
√
s212 ∈ iR is pure

imaginary, so one says that imaginary intervals are spacelike. As an example, at this
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Figure 15.4: A (1 + 1)–dimensional light cone. The forward light cone consists of timelike
events with ∆t > 0. The backward light cone consists of timelike events with ∆t < 0. The
causally disconnected regions are time-like, and intervals connecting the origin to any point
on the light cone itself are light-like.

moment, in the frame of the reader, the North and South poles of the earth are separated
by a space-like interval. If the interval between two events is space-like, a reference frame
can always be found in which the events are simultaneous.

An interval with s12 = 0 is said to be light-like.

This leads to the concept of the light cone, depicted in fig. 15.4. Consider an event E. In the
frame of an inertial observer, all events with s2 > 0 and ∆t > 0 are in E’s forward light cone

and are part of his absolute future. Events with s2 > 0 and ∆t < 0 lie in E’s backward light

cone are are part of his absolute past . Events with spacelike separations s2 < 0 are causally

disconnected from E. Two events which are causally disconnected can not possible influence
each other. Uniform rectilinear motion is represented by a line t = x/v with constant slope.
If v < c, this line is contained within E’s light cone. E is potentially influenced by all events
in its backward light cone, i.e. its absolute past. It is impossible to find a frame of reference
which will transform past into future, or spacelike into timelike intervals.
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15.2.1 Proper time

Proper time is the time read on a clock traveling with a moving observer. Consider two
observers, one at rest and one in motion. If dt is the differential time elapsed in the rest
frame, then

ds2 = c2 dt2 − dx2 − dy2 − dz2 (15.15)

= c2 dt′
2
, (15.16)

where dt′ is the differential time elapsed on the moving clock. Thus,

dt′ = dt

√
1− v2

c2
, (15.17)

and the time elapsed on the moving observer’s clock is

t′2 − t′1 =

t2∫

t1

dt

√
1− v2(t)

c2
. (15.18)

Thus, moving clocks run slower . This is an essential feature which is key to understanding
many important aspects of particle physics. A particle with a brief lifetime can, by moving
at speeds close to c, appear to an observer in our frame to be long-lived. It is customary to
define two dimensionless measures of a particle’s velocity:

β ≡ v

c
, γ ≡ 1√

1− β2
. (15.19)

As v → c, we have β → 1 and γ →∞.

Suppose we wish to compare the elapsed time on two clocks. We keep one clock at rest in
an inertial frame, while the other executes a closed path in space, returning to its initial
location after some interval of time. When the clocks are compared, the moving clock will
show a smaller elapsed time. This is often stated as the “twin paradox.” The total elapsed
time on a moving clock is given by

τ =
1

c

b∫

a

ds , (15.20)

where the integral is taken over the world line of the moving clock. The elapsed time τ
takes on a minimum value when the path from a to b is a straight line. To see this, one can
express τ

[
x(t)

]
as a functional of the path x(t) and extremize. This results in ẍ = 0.

15.2.2 Irreverent problem from Spring 2002 final exam

Flowers for Algernon – Bob’s beloved hamster, Algernon, is very ill. He has only three hours
to live. The veterinarian tells Bob that Algernon can be saved only through a gallbadder
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transplant. A suitable donor gallbladder is available from a hamster recently pronounced
brain dead after a blender accident in New York (miraculously, the gallbladder was un-
scathed), but it will take Life Flight five hours to bring the precious rodent organ to San
Diego.

Bob embarks on a bold plan to save Algernon’s life. He places him in a cage, ties the cage to
the end of a strong meter-long rope, and whirls the cage above his head while the Life Flight
team is en route. Bob reasons that if he can make time pass more slowly for Algernon, the
gallbladder will arrive in time to save his life.

(a) At how many revolutions per second must Bob rotate the cage in order that the gall-
bladder arrive in time for the life-saving surgery? What is Algernon’s speed v0?

Solution : We have β(t) = ω0R/c is constant, therefore, from eqn. 15.18,

∆t = γ∆t′ . (15.21)

Setting ∆t′ = 3hr and ∆t = 5hr, we have γ = 5
3 , which entails β =

√
1− γ−2 = 4

5 . Thus,

v0 = 4
5 c, which requires a rotation frequency of ω0/2π = 38.2MHz.

(b) Bob finds that he cannot keep up the pace! Assume Algernon’s speed is given by

v(t) = v0

√
1− t

T
(15.22)

where v0 is the speed from part (a), and T = 5h. As the plane lands at the pet hospital’s
emergency runway, Bob peers into the cage to discover that Algernon is dead! In order to
fill out his death report, the veterinarian needs to know: when did Algernon die? Assuming
he died after his own hamster watch registered three hours, derive an expression for the
elapsed time on the veterinarian’s clock at the moment of Algernon’s death.

Solution : 〈Sniffle〉. We have β(t) = 4
5

(
1− t

T

)1/2
. We set

T ′ =

T ∗∫

0

dt
√

1− β2(t) (15.23)

where T ′ = 3hr and T ∗ is the time of death in Bob’s frame. We write β0 = 4
5 and

γ0 = (1− β2
0)−1/2 = 5

3 . Note that T ′/T =
√

1− β2
0 = γ−1

0 .

Rescaling by writing ζ = t/T , we have

T ′

T
= γ−1

0 =

T ∗/T∫

0

dζ
√

1− β2
0 + β2

0 ζ

=
2

3β2
0

[(
1− β2

0 + β2
0

T ∗

T

)3/2

− (1− β2
0)3/2

]

=
2

3γ0
· 1

γ2
0 − 1

[(
1 + (γ2

0 − 1)
T ∗

T

)3/2

− 1

]
. (15.24)
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Solving for T ∗/T we have

T ∗

T
=

(
3
2 γ

2
0 − 1

2

)2/3
− 1

γ2
0 − 1

. (15.25)

With γ0 = 5
3 we obtain

T ∗

T
= 9

16

[(
11
3

)2/3 − 1
]

= 0.77502 . . . (15.26)

Thus, T ∗ = 3.875 hr = 3 hr 52 min 50.5 sec after Bob starts swinging.

(c) Identify at least three practical problems with Bob’s scheme.

Solution : As you can imagine, student responses to this part were varied and generally
sarcastic. E.g. “the atmosphere would ignite,” or “Bob’s arm would fall off,” or “Algernon’s
remains would be found on the inside of the far wall of the cage, squashed flatter than a
coat of semi-gloss paint,” etc.

15.3 Four-Vectors and Lorentz Transformations

We have spoken thus far about different reference frames. So how precisely do the coordi-
nates (t, x, y, z) transform between frames K and K ′? In classical mechanics, we have t = t′

and x = x′ + u t, according to fig. 15.3. This yields the Galilean transformation,




t
x
y
z


 =




1 0 0 0

ux 1 0 0

uy 0 1 0

uz 0 0 1







t′

x′

y′

z′


 . (15.27)

Such a transformation does not leave intervals invariant.

Let us define the four-vector xµ as

xµ =




ct
x
y
z


 ≡

(
ct
x

)
. (15.28)

Thus, x0 = ct, x1 = x, x2 = y, and x3 = z. In order for intervals to be invariant, the
transformation between xµ in frame K and x′ µ in frame K ′ must be linear:

xµ = Lµ
ν x

′ ν , (15.29)

where we are using the Einstein convention of summing over repeated indices. We define
the Minkowski metric tensor gµν as follows:

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (15.30)
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Clearly g = gt is a symmetric matrix.

Note that the matrix Lα
β has one raised index and one lowered index. For the notation we

are about to develop, it is very important to distinguish raised from lowered indices. To
raise or lower an index, we use the metric tensor. For example,

xµ = gµν x
ν =




ct
−x
−y
−z


 . (15.31)

The act of summing over an identical raised and lowered index is called index contraction.
Note that

gµ
ν = gµρ gρν = δµ

ν =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (15.32)

Now let’s investigate the invariance of the interval. We must have x′ µ x′µ = xµ xµ. Note
that

xµ xµ = Lµ
α x

′ α L β
µ x′β

=
(
Lµ

α gµν L
ν
β

)
x′

α
x′

β
, (15.33)

from which we conclude

Lµ
α gµν L

ν
β = gαβ . (15.34)

This result also may be written in other ways:

Lµα gµν L
νβ = gαβ , Lt

α
µ gµν L

ν
β = gαβ (15.35)

Another way to write this equation is Lt g L = g. A rank-4 matrix which satisfies this
constraint, with g = diag(+,−,−,−) is an element of the group O(3, 1), known as the
Lorentz group.

Let us now count the freedoms in L. As a 4 × 4 real matrix, it contains 16 elements. The
matrix Lt g L is a symmetric 4×4 matrix, which contains 10 independent elements: 4 along
the diagonal and 6 above the diagonal. Thus, there are 10 constraints on 16 elements of L,
and we conclude that the group O(3, 1) is 6-dimensional. This is also the dimension of the
four-dimensional orthogonal group O(4), by the way. Three of these six parameters may
be taken to be the Euler angles. That is, the group O(3) constitutes a three-dimensional
subgroup of the Lorentz group O(3, 1), with elements

Lµ
ν =




1 0 0 0

0 R11 R12 R13

0 R21 R22 R23

0 R31 R32 R33


 , (15.36)
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where RtR = MI, i.e. R ∈ O(3) is a rank-3 orthogonal matrix, parameterized by the three

Euler angles (φ, θ, ψ). The remaining three parameters form a vector β = (βx, βy, βz) and
define a second class of Lorentz transformations, called boosts:2

Lµ
ν =




γ γ βx γ βy γ βz

γ βx 1 + (γ − 1) β̂x β̂x (γ − 1) β̂x β̂y (γ − 1) β̂x β̂z

γ βy (γ − 1) β̂x β̂y 1 + (γ − 1) β̂y β̂y (γ − 1) β̂y β̂z

γ βz (γ − 1) β̂x β̂z (γ − 1) β̂y β̂z 1 + (γ − 1) β̂z β̂z


 , (15.37)

where

β̂ =
β

|β| , γ =
(
1− β2

)−1/2
. (15.38)

IMPORTANT : Since the components of β are not the spatial components of a four
vector, we will only write these components with a lowered index, as βi, with i = 1, 2, 3. We

will not write βi with a raised index, but if we did, we’d mean the same thing, i.e. βi = βi.

Note that for the spatial components of a 4-vector like xµ, we have xi = −xi.

Let’s look at a simple example, where βx = β and βy = βz = 0. Then

Lµ
ν =




γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1


 . (15.39)

The effect of this Lorentz transformation xµ = Lµ
ν x

′ ν is thus

ct = γct′ + γβx′ (15.40)

x = γβct′ + γx′ . (15.41)

How fast is the origin of K ′ moving in the K frame? We have dx′ = 0 and thus

1

c

dx

dt
=
γβ c dt′

γ c dt′
= β . (15.42)

Thus, u = βc, i.e. β = u/c.

It is convenient to take advantage of the fact that Pβ
ij ≡ β̂i β̂j is a projection operator , which

satisfies
(
Pβ
)2

= Pβ. The action of Pβ
ij on any vector ξ is to project that vector onto the β̂

direction:

Pβ ξ = (β̂ · ξ) β̂ . (15.43)

We may now write the general Lorentz boost, with β = u/c, as

L =

(
γ γβt

γβ I + (γ − 1)Pβ

)
, (15.44)

2Unlike rotations, the boosts do not themselves define a subgroup of O(3, 1).
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where I is the 3× 3 unit matrix, and where we write column and row vectors

β =



βx

βy

βz


 , βt =

(
βx βy βz

)
(15.45)

as a mnemonic to help with matrix multiplications. We now have
(
ct
x

)
=

(
γ γβt

γβ I + (γ − 1)Pβ

)(
ct′

x′

)
=

(
γct′ + γβ · x′

γβct′ + x′ + (γ − 1)Pβ x′

)
. (15.46)

Thus,

ct = γct′ + γβ ·x′ (15.47)

x = γβct′ + x′ + (γ − 1) (β̂ ·x′) β̂ . (15.48)

If we resolve x and x′ into components parallel and perpendicular to β, writing

x‖ = β̂ ·x , x⊥ = x− (β̂ ·x) β̂ , (15.49)

with corresponding definitions for x′‖ and x′
⊥, the general Lorentz boost may be written as

ct = γct′ + γβx′‖ (15.50)

x‖ = γβct′ + γx′‖ (15.51)

x⊥ = x′
⊥ . (15.52)

Thus, the components of x and x′ which are parallel to β enter into a one-dimensional
Lorentz boost along with t and t′, as described by eqn. 15.41. The components of x and
x′ which are perpendicular to β are unaffected by the boost.

Finally, the Lorentz group O(3, 1) is a group under multiplication, which means that if La

and Lb are elements, then so is the product La Lb. Explicitly, we have

(La Lb)t g La Lb = Lt
b (Lt

a g La)Lb = Lt
b g Lb = g . (15.53)

15.3.1 Covariance and contravariance

Note that

Lt
α
µ gµν L

ν
β =




γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1




=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 = gαβ , (15.54)
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since γ2 (1−β2) = 1. This is in fact the general way that tensors transform under a Lorentz
transformation:

covariant vectors : xµ = Lµ
ν x

′ ν (15.55)

covariant tensors : Fµν = Lµ
α L

ν
β F

′ αβ
= Lµ

α F
′ αβ

Lt
β
ν (15.56)

Note how index contractions always involve one raised index and one lowered index. Raised
indices are called contravariant indices and lowered indiced are called covariant indices.
The transformation rules for contravariant vectors and tensors are

contravariant vectors : xµ = L ν
µ x′ν (15.57)

contravariant tensors : Fµν = L α
µ L β

ν F ′
αβ = L α

µ F ′
αβ L

tβ
ν (15.58)

A Lorentz scalar has no indices at all. For example,

ds2 = gµν dx
µ dxν , (15.59)

is a Lorentz scalar. In this case, we have contracted a tensor with two four-vectors. The
dot product of two four-vectors is also a Lorentz scalar:

a · b ≡ aµ bµ = gµν a
µ bν

= a0 b0 − a1 b1 − a2 b2 − a3 b3

= a0 b0 − a · b . (15.60)

Note that the dot product a · b of four-vectors is invariant under a simultaneous Lorentz
transformation of both aµ and bµ, i.e. a · b = a′ · b′. Indeed, this invariance is the very
definition of what it means for something to be a Lorentz scalar. Derivatives with respect
to covariant vectors yield contravariant vectors:

∂f

∂xµ
≡ ∂µf ,

∂Aµ

∂xν
= ∂νA

µ ≡ Bµ
ν ,

∂Bµ
ν

∂xλ
= ∂λB

µ
ν ≡ Cµ

νλ

et cetera. Note that differentiation with respect to the covariant vector xµ is expressed by
the contravariant differential operator ∂µ:

∂

∂xµ
≡ ∂µ =

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
(15.61)

∂

∂xµ

≡ ∂µ =

(
1

c

∂

∂t
, − ∂

∂x
, − ∂

∂y
, − ∂

∂z

)
. (15.62)

The contraction ≡ ∂µ∂µ is a Lorentz scalar differential operator, called the D’Alembertian:

=
1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (15.63)

The Helmholtz equation for scalar waves propagating with speed c can thus be written in
compact form as φ = 0.
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15.3.2 What to do if you hate raised and lowered indices

Admittedly, this covariant and contravariant business takes some getting used to. Ulti-
mately, it helps to keep straight which indices transform according to L (covariantly) and
which transform according to Lt (contravariantly). If you find all this irksome, the raising
and lowering can be safely ignored. We define the position four-vector as before, but with no
difference between raised and lowered indices. In fact, we can just represent all vectors and
tensors with lowered indices exclusively, writing e.g. xµ = (ct, x, y, z). The metric tensor is
g = diag(+,−,−,−) as before. The dot product of two four-vectors is

x · y = gµν xµ yν . (15.64)

The Lorentz transformation is
xµ = Lµν x′ν . (15.65)

Since this preserves intervals, we must have

gµν xµ yν = gµν Lµα x′α Lνβ y′β

=
(
Lt

αµ gµν Lνβ

)
x′α y′β , (15.66)

which entails
Lt

αµ gµν Lνβ = gαβ . (15.67)

In terms of the quantity Lµ
ν defined above, we have Lµν = Lµ

ν . In this convention, we could

completely avoid raised indices, or we could simply make no distinction, taking xµ = xµ

and Lµν = Lµ
ν = Lµν , etc.

15.3.3 Comparing frames

Suppose in the K frame we have a measuring rod which is at rest. What is its length as
measured in the K ′ frame? Recall K ′ moves with velocity u = u x̂ with respect to K. From
the Lorentz transformation in eqn. 15.41, we have

x1 = γ(x′1 + βc t′1) (15.68)

x2 = γ(x′2 + βc t′2) , (15.69)

where x1,2 are the positions of the ends of the rod in frame K. The rod’s length in any
frame is the instantaneous spatial separation of its ends. Thus, we set t′1 = t′2 and compute
the separation ∆x′ = x′2 − x′1:

∆x = γ∆x′ =⇒ ∆x′ = γ−1∆x =
(
1− β2

)1/2
∆x . (15.70)

The proper length ℓ0 of a rod is its instantaneous end-to-end separation in its rest frame.
We see that

ℓ(β) =
(
1− β2

)1/2
ℓ0 , (15.71)
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so the length is always greatest in the rest frame. This is an example of a Lorentz-Fitzgerald

contraction. Note that the transverse dimensions do not contract:

∆y′ = ∆y , ∆z′ = ∆z . (15.72)

Thus, the volume contraction of a bulk object is given by its length contraction: V ′ = γ−1 V.

A striking example of relativistic issues of length, time, and simultaneity is the famous
‘pole and the barn’ paradox, described in the Appendix (section ). Here we illustrate some
essential features via two examples.

15.3.4 Example I

Next, let’s analyze the situation depicted in fig. 15.3. In the K ′ frame, we’ll denote the
following spacetime points:

A′ =

(
ct′

−d

)
, B′ =

(
ct′

+d

)
, S′

− =

(
ct′

−ct′
)

, S′
− =

(
ct′

+ct′

)
. (15.73)

Note that the origin in K ′ is given by O′ = (ct′, 0). Here we are setting y = y′ = z = z′ = 0
and dealing only with one spatial dimension. The points S′

± denote the left-moving (S′
−)

and right-moving (S′
+) wavefronts. We see that the arrival of the signal S′

1 at A′ requires
S′

1 = A′, hence ct′ = d. The same result holds when we set S′
2 = B′ for the arrival of the

right-moving wavefront at B′.

We now use the Lorentz transformation

Lµ
ν =

(
γ γ β
γ β γ

)
(15.74)

to transform to the K frame. Thus,

A =

(
ct∗A
x∗A

)
= LA′ = γ

(
1 β
β 1

)(
d
−d

)
= γ(1− β)d

(
1
−1

)
(15.75)

B =

(
ct∗B
x∗B

)
= LB′ = γ

(
1 β
β 1

)(
d

+d

)
= γ(1 + β)d

(
1
1

)
. (15.76)

Thus, t∗A = γ(1− β)d/c and t∗B = γ(1 + β)d/c. Thus, the two events are not simultaneous
in K. The arrival at A is first.

15.3.5 Example II

Consider a rod of length ℓ0 extending from the origin to the point ℓ0 x̂ at rest in frame K.
In the frame K, the two ends of the rod are located at spacetime coordinates

A =

(
ct
0

)
and B =

(
ct

ℓ0

)
, (15.77)
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Figure 15.5: A rectangular plate moving at velocity V = V x̂.

respectively. Now consider the origin in frame K ′. Its spacetime coordinates are

C ′ =

(
ct′

0

)
. (15.78)

To an observer in the K frame, we have

C =

(
γ γβ
γβ γ

)(
ct′

0

)
=

(
γct′

γβct′

)
. (15.79)

Now consider two events. The first event is the coincidence of A with C, i.e. the origin of
K ′ instantaneously coincides with the origin of K. Setting A = C we obtain t = t′ = 0.
The second event is the coincidence of B with C. Setting B = C we obtain t = l0/βc and

t′ = ℓ0/γβc. Note that t = ℓ(β)/βc, i.e. due to the Lorentz-Fitzgerald contraction of the

rod as seen in the K ′ frame, where ℓ(β) = ℓ0/γ.

15.3.6 Deformation of a rectangular plate

Problem: A rectangular plate of dimensions a × b moves at relativistic velocity V = V x̂

as shown in fig. 15.5. In the rest frame of the rectangle, the a side makes an angle θ with
respect to the x̂ axis. Describe in detail and sketch the shape of the plate as measured by
an observer in the laboratory frame. Indicate the lengths of all sides and the values of all

interior angles. Evaluate your expressions for the case θ = 1
4π and V =

√
2
3 c.

Solution: An observer in the laboratory frame will measure lengths parallel to x̂ to be
Lorentz contracted by a factor γ−1, where γ = (1− β2)−1/2 and β = V/c. Lengths perpen-
dicular to x̂ remain unaffected. Thus, we have the situation depicted in fig. 15.6. Simple
trigonometry then says

tan φ = γ tan θ , tan φ̃ = γ−1 tan θ ,
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Figure 15.6: Relativistic deformation of the rectangular plate.

as well as

a′ = a

√
γ−2 cos2θ + sin2θ = a

√
1− β2 cos2θ

b′ = b

√
γ−2 sin2θ + cos2θ = b

√
1− β2 sin2θ .

The plate deforms to a parallelogram, with internal angles

χ = 1
2π + tan−1(γ tan θ)− tan−1(γ−1 tan θ)

χ̃ = 1
2π − tan−1(γ tan θ) + tan−1(γ−1 tan θ) .

Note that the area of the plate as measured in the laboratory frame is

Ω′ = a′ b′ sinχ = a′ b′ cos(φ− φ̃)

= γ−1Ω ,

where Ω = ab is the proper area. The area contraction factor is γ−1 and not γ−2 (or γ−3

in a three-dimensional system) because only the parallel dimension gets contracted.

Setting V =
√

2
3 c gives γ =

√
3, and with θ = 1

4π we have φ = 1
3π and φ̃ = 1

6π. The interior

angles are then χ = 2
3π and χ̃ = 1

3π. The side lengths are a′ =
√

2
3 a and b′ =

√
2
3 b.
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15.3.7 Transformation of velocities

Let K ′ move at velocity u = cβ relative to K. The transformation from K ′ to K is given
by the Lorentz boost,

Lµ
ν =




γ γ βx γ βy γ βz

γ βx 1 + (γ − 1) β̂x β̂x (γ − 1) β̂x β̂y (γ − 1) β̂x β̂z

γ βy (γ − 1) β̂x β̂y 1 + (γ − 1) β̂y β̂y (γ − 1) β̂y β̂z

γ βz (γ − 1) β̂x β̂z (γ − 1) β̂y β̂z 1 + (γ − 1) β̂z β̂z


 . (15.80)

Applying this, we have
dxµ = Lµ

ν dx
′ ν . (15.81)

This yields

dx0 = γ dx′ 0 + γ β · dx′ (15.82)

dx = γ β dx′ 0 + dx′ + (γ − 1) β̂ β̂ ·dx′ . (15.83)

We then have

V = c
dx

dx0
=
c γ β dx′ 0 + c dx′ + c (γ − 1) β̂ β̂ ·dx′

γ dx′ 0 + γ β ·dx′

=
u + γ−1 V ′ + (1− γ−1) û û·V ′

1 + u·V ′/c2
. (15.84)

The second line is obtained by dividing both numerator and denominator by dx′ 0, and then
writing V ′ = dx′/dx′ 0. There are two special limiting cases:

velocities parallel
(
û·V̂ ′ = 1) =⇒ V =

(u+ V ′) û

1 + uV ′/c2
(15.85)

velocities perpendicular
(
û·V̂ ′ = 0) =⇒ V = u + γ−1V ′ . (15.86)

Note that if either u or V ′ is equal to c, the resultant expression has |V | = c as well. One
can’t boost the speed of light!

Let’s revisit briefly the example in section 15.3.4. For an observer, in the K frame, the
relative velocity of S and A is c + u, because even though we must boost the velocity
−c x̂ of the left-moving light wave by u x̂, the result is still −c x̂, according to our velocity
addition formula. The distance between the emission and detection points is d(β) = d/γ.
Thus,

t∗A =
d(β)

c+ u
=
d

γ
· 1

c+ u
=

d

γc
· 1− β
1− β2

= γ (1− β)
d

c
. (15.87)

This result is exactly as found in section 15.3.4 by other means. A corresponding analysis
yields t∗B = γ (1 + β) d/c. again in agreement with the earlier result. Here, it is crucial to
account for the Lorentz contraction of the distance between the source S and the observers
A and B as measured in the K frame.
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15.3.8 Four-velocity and four-acceleration

In nonrelativistic mechanics, the velocity V = dx
dt is locally tangent to a particle’s trajectory.

In relativistic mechanics, one defines the four-velocity ,

uα ≡ dxα

ds
=

dxα

√
1− β2 c dt

=

(
γ
γβ

)
, (15.88)

which is locally tangent to the world line of a particle. Note that

gαβ u
α uβ = 1 . (15.89)

The four-acceleration is defined as

wν ≡ duν

ds
=
d2xν

ds2
. (15.90)

Note that u ·w = 0, so the 4-velocity and 4-acceleration are orthogonal with respect to the
Minkowski metric.

15.4 Three Kinds of Relativistic Rockets

15.4.1 Constant acceleration model

Consider a rocket which undergoes constant acceleration along x̂. Clearly the rocket has
no rest frame per se, because its velocity is changing. However, this poses no serious
obstacle to discussing its relativistic motion. We consider a frame K ′ in which the rocket
is instantaneously at rest. In such a frame, the rocket’s 4-acceleration is w′ α = (0, a/c2),
where we suppress the transverse coordinates y and z. In an inertial frame K, we have

wα =
d

ds

(
γ
γβ

)
=
γ

c

(
γ̇

γβ̇ + γ̇β

)
. (15.91)

Transforming w′ α into the K frame, we have

wα =

(
γ γβ
γβ γ

)(
0

a/c2

)
=

(
γβa/c2

γa/c2

)
. (15.92)

Taking the upper component, we obtain the equation

γ̇ =
βa

c
=⇒ d

dt

(
β√

1− β2

)
=
a

c
, (15.93)

the solution of which, with β(0) = 0, is

β(t) =
at√

c2 + a2t2
, γ(t) =

√

1 +

(
at

c

)2
. (15.94)
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The proper time for an observer moving with the rocket is thus

τ =

t∫

0

c dt1√
c2 + a2t21

=
c

a
sinh−1

(at
c

)
.

For large times t≫ c/a, the proper time grows logarithmically in t, which is parametrically
slower. To find the position of the rocket, we integrate ẋ = cβ, and obtain, with x(0) = 0,

x(t) =

t∫

0

a ct1 dt1√
c2 + a2t21

=
c

a

(√
c2 + a2 t2 − c

)
. (15.95)

It is interesting to consider the situation in the frame K ′. We then have

β(τ) = tanh(aτ/c) , γ(τ) = cosh(aτ/c) . (15.96)

For an observer in the frame K ′, the distance he has traveled is ∆x′(τ) = ∆x(τ)/γ(τ), as
we found in eqn. 15.70. Now x(τ) = (c2/a)

(
cosh(aτ/c) − 1

)
, hence

∆x′(τ) =
c2

a

(
1− sech(aτ/c)

)
. (15.97)

For τ ≪ c/a, we expand sech(aτ/c) ≈ 1− 1
2(aτ/c)2 and find x′(τ) = 1

2aτ
2, which clearly is

the nonrelativistic limit. For τ →∞, however, we have ∆x′(τ)→ c2/a is finite! Thus, while
the entire Universe is falling behind the accelerating observer, it all piles up at a horizon a
distance c2/a behind it, in the frame of the observer. The light from these receding objects
is increasingly red-shifted (see section 15.6 below), until it is no longer visible. Thus, as
John Baez describes it, the horizon is “a dark plane that appears to be swallowing the
entire Universe!” In the frame of the inertial observer, however, nothing strange appears to
be happening at all!

15.4.2 Constant force with decreasing mass

Suppose instead the rocket is subjected to a constant force F0 in its instantaneous rest

frame, and furthermore that the rocket’s mass satisfies m(τ) = m0(1− ατ), where τ is the
proper time for an observer moving with the rocket. Then from eqn. 15.93, we have

F0

m0(1− ατ)
=
d(γβ)

dt
= γ−1 d(γβ)

dτ

=
1

1− β2

dβ

dτ
=

d

dτ
1
2 ln

(
1 + β

1− β

)
, (15.98)

after using the chain rule, and with dτ/dt = γ−1. Integrating, we find

ln

(
1 + β

1− β

)
=

2F0

αm0c
ln
(
1− ατ

)
=⇒ β(τ) =

1− (1− ατ)r
1 + (1− ατ)r , (15.99)
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with r = 2F0/αm0c. As τ → α−1, the rocket loses all its mass, and it asymptotically
approaches the speed of light.

It is convenient to write

β(τ) = tanh

[
r

2
ln

(
1

1− ατ

)]
, (15.100)

in which case

γ =
dt

dτ
= cosh

[
r

2
ln

(
1

1− ατ

)]
(15.101)

1

c

dx

dτ
= sinh

[
r

2
ln

(
1

1− ατ

)]
. (15.102)

Integrating the first of these from τ = 0 to τ = α−1, we find t∗ ≡ t
(
τ = α−1

)
is

t∗ =
1

2α

1∫

0

dσ
(
σ−r/2 + σr/2

)
=





[
α2 −

( F0

mc

)2]−1
α if α >

F0

mc

∞ if α ≤ F0

mc .

(15.103)

Since β(τ = α−1) = 1, this is the time in the K frame when the rocket reaches the speed of
light.

15.4.3 Constant ejecta velocity

Our third relativistic rocket model is a generalization of what is commonly known as the
rocket equation in classical physics. The model is one of a rocket which is continually
ejecting burnt fuel at a velocity −u in the instantaneous rest frame of the rocket. The
nonrelativistic rocket equation follows from overall momentum conservation:

dprocket + dpfuel = d(mv) + (v − u) (−dm) = 0 , (15.104)

since if dm < 0 is the differential change in rocket mass, the differential ejecta mass is −dm.
This immediately gives

mdv + u dm = 0 =⇒ v = u ln

(
m0

m

)
, (15.105)

where the rocket is assumed to begin at rest, and where m0 is the initial mass of the rocket.
Note that as m → 0 the rocket’s speed increases without bound, which of course violates
special relativity.

In relativistic mechanics, as we shall see in section 15.5, the rocket’s momentum, as described
by an inertial observer, is p = γmv, and its energy is γmc2. We now write two equations
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for overall conservation of momentum and energy:

d(γmv) + γeve dme = 0 (15.106)

d(γmc2) + γe(dme c
2) = 0 , (15.107)

where ve is the velocity of the ejecta in the inertial frame, dme is the differential mass of

the ejecta, and γe =
(
1− v2

e

c2

)−1/2
. From the second of these equations, we have

γe dme = −d(γm) , (15.108)

which we can plug into the first equation to obtain

(v − ve) d(γm) + γmdv = 0 . (15.109)

Before solving this, we remark that eqn. 15.108 implies that dme < |dm| – the differential
mass of the ejecta is less than the mass lost by the rocket! This is Einstein’s famous equation
E = mc2 at work – more on this later.

To proceed, we need to use the parallel velocity addition formula of eqn. 15.85 to find ve:

ve =
v − u
1− uv

c2
=⇒ v − ve =

u
(
1− v2

c2

)
(
1− uv

c2

) . (15.110)

We now define βu = u/c, in which case eqn, 15.109 becomes

βu (1− β2) d(γm) + (1− ββu) γmdβ = 0 . (15.111)

Using dγ = γ3β dβ, we observe a felicitous cancellation of terms, leaving

βu

dm

m
+

dβ

1− β2
= 0 . (15.112)

Integrating, we obtain

β = tanh

(
βu ln

m0

m

)
. (15.113)

Note that this agrees with the result of eqn. 15.100, if we take βu = F0/αmc.

15.5 Relativistic Mechanics

Relativistic particle dynamics follows from an appropriately extended version of Hamilton’s
principle δS = 0. The action S must be a Lorentz scalar. The action for a free particle is

S
[
x(t)

]
= −mc

b∫

a

ds = −mc2
t
b∫

ta

dt

√
1− v2

c2
. (15.114)
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Thus, the free particle Lagrangian is

L = −mc2
√

1− v2

c2
= −mc2 + 1

2mv2 + 1
8mc

2

(
v2

c2

)2
+ . . . . (15.115)

Thus, L can be written as an expansion in powers of v2/c2. Note that L(v = 0) = −mc2.
We interpret this as −U0, where U0 = mc2 is the rest energy of the particle. As a constant,
it has no consequence for the equations of motion. The next term in L is the familiar
nonrelativistic kinetic energy, 1

2mv2. Higher order terms are smaller by increasing factors
of β2 = v2/c2.

We can add a potential U(x, t) to obtain

L(x, ẋ, t) = −mc2
√

1− ẋ2

c2
− U(x, t) . (15.116)

The momentum of the particle is

p =
∂L

∂ẋ
= γmẋ . (15.117)

The force is F = −∇U as usual, and Newton’s Second Law still reads ṗ = F . Note that

ṗ = γm

(
v̇ +

vv̇

c2
γ2v

)
. (15.118)

Thus, the force F is not necessarily in the direction of the acceleration a = v̇. The
Hamiltonian, recall, is a function of coordinates and momenta, and is given by

H = p · ẋ− L =
√
m2c4 + p2c2 + U(x, t) . (15.119)

Since ∂L/∂t = 0 for our case, H is conserved by the motion of the particle. There are two
limits of note:

|p| ≪ mc (non-relativistic) : H = mc2 +
p2

2m
+ U +O(p4/m4c4) (15.120)

|p| ≫ mc (ultra-relativistic) : H = c|p|+ U +O(mc/p) . (15.121)

Expressed in terms of the coordinates and velocities, we have H = E, the total energy, with

E = γmc2 + U . (15.122)

In particle physics applications, one often defines the kinetic energy T as

T = E − U −mc2 = (γ − 1)mc2 . (15.123)

When electromagnetic fields are included,

L(x, ẋ, t) = −mc2
√

1− ẋ2

c2
− q φ+

q

c
A · ẋ

= −γmc2 − q

c
Aµ

dxµ

dt
, (15.124)
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where the electromagnetic 4-potential is Aµ = (φ , A). Recall Aµ = gµν Aν has the sign of
its spatial components reversed. One the has

p =
∂L

∂ẋ
= γmẋ +

q

c
A , (15.125)

and the Hamiltonian is

H =

√
m2c4 +

(
p− q

c
A
)2

+ q φ . (15.126)

15.5.1 Relativistic harmonic oscillator

From E = γmc2 + U , we have

ẋ2 = c2

[
1−

(
mc2

E − U(x)

)2 ]
. (15.127)

Consider the one-dimensional harmonic oscillator potential U(x) = 1
2kx

2. We define the
turning points as x = ±b, satisfying

E −mc2 = U(±b) = 1
2kb

2 . (15.128)

Now define the angle θ via x ≡ b cos θ, and further define the dimensionless parameter
ǫ = kb2/4mc2. Then, after some manipulations, one obtains

θ̇ = ω0

√
1 + ǫ sin2θ

1 + 2ǫ sin2θ
, (15.129)

with ω0 =
√
k/m as in the nonrelativistic case. Hence, the problem is reduced to quadra-

tures (a quaint way of saying ‘doing an an integral’):

t(θ)− t0 = ω−1
0

θ∫

θ0

dϑ
1 + 2ǫ sin2ϑ√

1 + ǫ sin2ϑ
. (15.130)

While the result can be expressed in terms of elliptic integrals, such an expression is not
particularly illuminating. Here we will content ourselves with computing the period T (ǫ):

T (ǫ) =
4

ω0

π

2∫

0

dϑ
1 + 2ǫ sin2ϑ√

1 + ǫ sin2ϑ
(15.131)

=
4

ω0

π

2∫

0

dϑ
(
1 + 3

2ǫ sin
2ϑ− 5

8ǫ
2 sin4ϑ+ . . .

)

=
2π

ω0
·
{

1 + 3
4ǫ− 15

64ǫ
2 + . . .

}
. (15.132)

Thus, for the relativistic harmonic oscillator, the period does depend on the amplitude,
unlike the nonrelativistic case.
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15.5.2 Energy-momentum 4-vector

Let’s focus on the case where U(x) = 0. This is in fact a realistic assumption for subatomic
particles, which propagate freely between collision events.

The differential proper time for a particle is given by

dτ =
ds

c
= γ−1 dt , (15.133)

where xµ = (ct,x) are coordinates for the particle in an inertial frame. Thus,

p = γmẋ = m
dx

dτ
,

E

c
= mcγ = m

dx0

dτ
, (15.134)

with x0 = ct. Thus, we can write the energy-momentum 4-vector as

pµ = m
dxµ

dτ
=




E/c
px

py

pz


 . (15.135)

Note that pν = mcuν , where uν is the 4-velocity of eqn. 15.88. The four-momentum satisfies
the relation

pµ pµ =
E2

c2
− p2 = m2c2 . (15.136)

The relativistic generalization of force is

fµ =
dpµ

dτ
=
(
γF ·v/c , γF

)
, (15.137)

where F = dp/dt as usual.

The energy-momentum four-vector transforms covariantly under a Lorentz transformation.
This means

pµ = Lµ
ν p

′ ν . (15.138)

If frame K ′ moves with velocity u = cβ x̂ relative to frame K, then

E

c
=
c−1E′ + β p′x√

1− β2
, px =

p′x + βc−1E′

√
1− β2

, py = p′y , pz = p′z . (15.139)

In general, from eqns. 15.50, 15.51, and 15.52, we have

E

c
= γ

E′

c
+ γβp′‖ (15.140)

p‖ = γβ
E

c
+ γp′‖ (15.141)

p⊥ = p′
⊥ (15.142)

where p‖ = β̂ ·p and p⊥ = p− (β̂ ·p) β̂.
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15.5.3 4-momentum for massless particles

For a massless particle, such as a photon, we have pµ pµ = 0, which means E2 = p2 c2. The
4-momentum may then be written pµ =

(
|p| , p

)
. We define the 4-wavevector kµ by the

relation pµ = ~kµ, where ~ = h/2π and h is Planck’s constant. We also write ω = ck, with
E = ~ω.

15.6 Relativistic Doppler Effect

The 4-wavevector kµ =
(
ω/c , k

)
for electromagnetic radiation satisfies kµ kµ = 0. The

energy-momentum 4-vector is pµ = ~kµ. The phase φ(xµ) = −kµ xµ = k ·x− ωt of a plane
wave is a Lorentz scalar. This means that the total number of wave crests (i.e. φ = 2πn)
emitted by a source will be the total number observed by a detector.

Suppose a moving source emits radiation of angular frequency ω′ in its rest frame. Then

k′ µ = Lµ
ν(−β) kν

=




γ −γ βx −γ βy −γ βz

−γ βx 1 + (γ − 1) β̂x β̂x (γ − 1) β̂x β̂y (γ − 1) β̂x β̂z

−γ βy (γ − 1) β̂x β̂y 1 + (γ − 1) β̂y β̂y (γ − 1) β̂y β̂z

−γ βz (γ − 1) β̂x β̂z (γ − 1) β̂y β̂z 1 + (γ − 1) β̂z β̂z







ω/c
kx

ky

kz


 .

(15.143)

This gives
ω′

c
= γ

ω

c
− γ β · k = γ

ω

c
(1− β cos θ) , (15.144)

where θ = cos−1(β̂ · k̂) is the angle measured in K between β̂ and k̂. Solving for ω, we have

ω =

√
1− β2

1− β cos θ
ω0 , (15.145)

where ω0 = ω′ is the angular frequency in the rest frame of the moving source. Thus,

θ = 0 ⇒ source approaching ⇒ ω =

√
1 + β

1− β ω0 (15.146)

θ = 1
2π ⇒ source perpendicular ⇒ ω =

√
1− β2 ω0 (15.147)

θ = π ⇒ source receding ⇒ ω =

√
1− β
1 + β

ω0 . (15.148)

Recall the non-relativistic Doppler effect:

ω =
ω0

1− (V/c) cos θ
. (15.149)
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Figure 15.7: Alice’s big adventure.

We see that approaching sources have their frequencies shifted higher; this is called the
blue shift , since blue light is on the high frequency (short wavelength) end of the optical
spectrum. By the same token, receding sources are red-shifted to lower frequencies.

15.6.1 Romantic example

Alice and Bob have a “May-December” thang going on. Bob is May and Alice December,
if you get my drift. The social stigma is too much to bear! To rectify this, they decide
that Alice should take a ride in a space ship. Alice’s itinerary takes her along a sector of
a circle of radius R and angular span of Θ = 1 radian, as depicted in fig. 15.7. Define
O ≡ (r = 0), P ≡ (r = R,φ = −1

2Θ), and Q ≡ (r = R,φ = 1
2Θ). Alice’s speed along the

first leg (straight from O to P) is va = 3
5 c. Her speed along the second leg (an arc from

P to Q) is vb = 12
13 c. The final leg (straight from Q to O) she travels at speed vc = 4

5 c.
Remember that the length of an circular arc of radius R and angular spread α (radians) is
ℓ = αR.

(a) Alice and Bob synchronize watches at the moment of Alice’s departure. What is the
elapsed time on Bob’s watch when Alice returns? What is the elapsed time on Alice’s
watch? What must R be in order for them to erase their initial 30 year age difference?

Solution : In Bob’s frame, Alice’s trip takes a time

∆t =
R

cβa
+
RΘ

cβb
+

R

cβc

=
R

c

(
5
3 + 13

12 + 5
4

)
=

4R

c
. (15.150)

The elapsed time on Alice’s watch is

∆t′ =
R

cγaβa
+

RΘ

cγbβb
+

R

cγcβc

=
R

c

(
5
3 · 4

5 + 13
12 · 5

13 + 5
4 · 3

5

)
=

5R

2c
. (15.151)
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Thus, ∆T = ∆t − ∆t′ = 3R/2c and setting ∆T = 30yr, we find R = 20 ly. So Bob will
have aged 80 years and Alice 50 years upon her return. (Maybe this isn’t such a good plan
after all.)

(b) As a signal of her undying love for Bob, Alice continually shines a beacon throughout
her trip. The beacon produces monochromatic light at wavelength λ0 = 6000 Å (frequency

f0 = c/λ0 = 5 × 1014 Hz). Every night, Bob peers into the sky (with a radiotelescope),
hopefully looking for Alice’s signal. What frequencies fa, fb, and fc does Bob see?

Solution : Using the relativistic Doppler formula, we have

fa =

√
1− βa

1 + βa
× f0 = 1

2f0

fb =
√

1− β2
b × f0 = 5

13f0

fc =

√
1 + βc

1− βc
× f0 = 3f0 . (15.152)

(c) Show that the total number of wave crests counted by Bob is the same as the number
emitted by Alice, over the entire trip.

Solution : Consider first the O–P leg of Alice’s trip. The proper time elapsed on Alice’s
watch during this leg is ∆t′a = R/cγaβa, hence she emits N ′

a = Rf0/cγaβa wavefronts during

this leg. Similar considerations hold for the P–Q and Q–O legs, so N ′
b = RΘf0/cγbβb and

N ′
c = Rf0/cγcβc.

Although the duration of the O–P segment of Alice’s trip takes a time ∆ta = R/cβa in Bob’s

frame, he keeps receiving the signal at the Doppler-shifted frequency fa until the wavefront
emitted when Alice arrives at P makes its way back to Bob. That takes an extra time R/c,
hence the number of crests emitted for Alice’s O–P leg is

Na =

(
R

cβa
+
R

c

)√
1− βa

1 + βa
× f0 =

Rf0

cγaβa

= N ′
a , (15.153)

since the source is receding from the observer.

During the P–Q leg, we have θ = 1
2π, and Alice’s velocity is orthogonal to the wavevector k,

which is directed radially inward. Bob’s first signal at frequency fb arrives a time R/c after
Alice passes P, and his last signal at this frequency arrives a time R/c after Alice passes Q.
Thus, the total time during which Bob receives the signal at the Doppler-shifted frequency
fb is ∆tb = RΘ/c, and

Nb =
RΘ

cβb
·
√

1− β2
b × f0 =

RΘf0

cγbβb

= N ′
b . (15.154)
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Finally, during the Q–O home stretch, Bob first starts to receive the signal at the Doppler-
shifted frequency fc a time R/c after Alice passes Q, and he continues to receive the signal
until the moment Alice rushes into his open and very flabby old arms when she makes it
back to O. Thus, Bob receives the frequency fc signal for a duration ∆tc − R/c, where

∆tc = R/cβc. Thus,

Nc =

(
R

cβc
− R

c

)√
1 + βc

1− βc
× f0 =

Rf0

cγcβc

= N ′
c , (15.155)

since the source is approaching.

Therefore, the number of wavelengths emitted by Alice will be precisely equal to the number
received by Bob – none of the waves gets lost.

15.7 Relativistic Kinematics of Particle Collisions

As should be expected, special relativity is essential toward the understanding of subatomic
particle collisions, where the particles themselves are moving at close to the speed of light. In
our analysis of the kinematics of collisions, we shall find it convenient to adopt the standard
convention on units, where we set c ≡ 1. Energies will typically be given in GeV, where
1GeV = 109 eV = 1.602 × 10−10 J. Momenta will then be in units of GeV/c, and masses
in units of GeV/c2. With c ≡ 1, it is then customary to quote masses in energy units. For

example, the mass of the proton in these units is mp = 938MeV, and m
π−

= 140MeV.

For a particle of massM , its 4-momentum satisfies Pµ Pµ = M2 (remember c = 1). Consider
now an observer with 4-velocity Uµ. The energy of the particle, in the rest frame of the
observer is E = Pµ Uµ. For example, if Pµ = (M, 0, 0, 0) is its rest frame, and Uµ = (γ , γβ),
then E = γM , as we have already seen.

Consider next the emission of a photon of 4-momentum Pµ = (~ω/c, ~k) from an object
with 4-velocity V µ, and detected in a frame with 4-velocity Uµ. In the frame of the detector,
the photon energy is E = PµUµ, while in the frame of the emitter its energy is E′ = Pµ Vµ.
If Uµ = (1, 0, 0, 0) and V µ = (γ , γβ), then E = ~ω and E′ = ~ω′ = γ~(ω − β · k) =
γ~ω(1−β cos θ), where θ = cos−1

(
β̂ · k̂

)
. Thus, ω = γ−1ω′/(1−β cos θ). This recapitulates

our earlier derivation in eqn. 15.144.

Consider next the interaction of several particles. If in a given frame the 4-momenta of the
reactants are Pµ

i , where n labels the reactant ‘species’, and the 4-momenta of the products
are Qµ

j , then if the collision is elastic, we have that total 4-momentum is conserved, i.e.

N∑

i=1

Pµ
i =

N̄∑

j=1

Qµ
j , (15.156)

where there are N reactants and N̄ products. For massive particles, we can write

Pµ
i = γimi

(
1 , vi) , Qµ

j = γ̄j m̄j

(
1 , v̄j) , (15.157)
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Figure 15.8: Spontaneous decay of a single reactant into two products.

while for massless particles,

Pµ
i = ~ki

(
1 , k̂

)
, Qµ

j = ~k̄j

(
1 , ˆ̄k

)
. (15.158)

15.7.1 Spontaneous particle decay into two products

Consider first the decay of a particle of mass M into two particles. We have Pµ = Qµ
1 +Qµ

2 ,
hence in the rest frame of the (sole) reactant, which is also called the ‘center of mass’

(CM) frame since the total 3-momentum vanishes therein, we have M = E1 + E2. Since

ECM

i = γCMmi, and γi ≥ 1, clearly we must have M > m1 +m2, or else the decay cannot
possibly conserve energy. To analyze further, write Pµ −Qµ

1 = Qµ
2 . Squaring, we obtain

M2 +m2
1 − 2Pµ Q

µ
1 = m2

2 . (15.159)

The dot-product P ·Q1 is a Lorentz scalar, and hence may be evaluated in any frame.

Let us first consider the CM frame, where Pµ = M(1, 0, 0, 0), and PµQ
µ
1 = MECM

1 , where
ECM

1 is the energy of n = 1 product in the rest frame of the reactant. Thus,

ECM

1 =
M2 +m2

1 −m2
2

2M
, ECM

2 =
M2 +m2

2 −m2
1

2M
, (15.160)

where the second result follows merely from switching the product labels. We may now
write Qµ

1 = (ECM

1 ,pCM) and Qµ
2 = (ECM

2 ,−pCM), with

(pCM)2 = (ECM

1 )2 −m2
1 = (ECM

2 )2 −m2
2

=

(
M2 −m2

1 −m2
2

2M

)2
−
(
m1m2

M

)2
. (15.161)

In the laboratory frame, we have Pµ = γM (1 , V ) and Qµ
i = γimi (1 , Vi). Energy and

momentum conservation then provide four equations for the six unknowns V1 and V2. Thus,
there is a two-parameter family of solutions, assuming we regard the reactant velocity V K as
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fixed, corresponding to the freedom to choose p̂CM in the CM frame solution above. Clearly
the three vectors V , V1, and V2 must lie in the same plane, and with V fixed, only one
additional parameter is required to fix this plane. The other free parameter may be taken
to be the relative angle θ1 = cos−1

(
V̂ · V̂1

)
(see fig. 15.8). The angle θ2 as well as the speed

V2 are then completely determined. We can use eqn. 15.159 to relate θ1 and V1:

M2 +m2
1 −m2

2 = 2Mm1γγ1

(
1− V V1 cos θ1

)
. (15.162)

It is convenient to express both γ1 and V1 in terms of the energy E1:

γ1 =
E1

m1

, V1 =

√
1− γ−2

1 =

√
1− m2

1

E2
1

. (15.163)

This results in a quadratic equation for E1, which may be expressed as

(1− V 2 cos2θ1)E
2
1 − 2

√
1− V 2 ECM

1 E1 + (1− V 2)(ECM

1 )2 +m2
1 V

2 cos2θ1 = 0 , (15.164)

the solutions of which are

E1 =

√
1− V 2 ECM

1 ± V cos θ1

√
(1− V 2)(ECM

1 )2 − (1− V 2 cos2θ1)m
2
1

1− V 2 cos2θ1
. (15.165)

The discriminant is positive provided

(
ECM

1

m1

)2
>

1− V 2 cos2θ1
1− V 2

, (15.166)

which means

sin2θ1 <
V −2 − 1

(V CM

1 )−2 − 1
≡ sin2θ∗1 , (15.167)

where

V CM

1 =

√

1−
(
m1

ECM

1

)2
(15.168)

is the speed of product 1 in the CM frame. Thus, for V < V CM

1 < 1, the scattering angle θ1
may take on any value, while for larger reactant speeds V CM

1 < V < 1 the quantity sin2θ1
cannot exceed a critical value.

15.7.2 Miscellaneous examples of particle decays

Let us now consider some applications of the formulae in eqn. 15.160:

• Consider the decay π0 → γγ, for which m1 = m2 = 0. We then have ECM

1 = ECM

2 =
1
2M . Thus, with M = m

π0 = 135MeV, we have ECM

1 = ECM

2 = 67.5MeV for the
photon energies in the CM frame.
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• For the reaction K+ −→ µ+ + νµ we have M = m
K+ = 494MeV and m1 = m

µ−
=

106MeV. The neutrino mass is m2 ≈ 0, hence ECM

2 = 236MeV is the emitted neu-
trino’s energy in the CM frame.

• A Λ0 hyperon with a mass M = m
Λ0 = 1116MeV decays into a proton (m1 = mp =

938MeV) and a pion m2 = m
π−

= 140MeV). The CM energy of the emitted proton
is ECM

1 = 943MeV and that of the emitted pion is ECM

2 = 173MeV.

15.7.3 Threshold particle production with a stationary target

Consider now a particle of mass M1 moving with velocity V1 = V1 x̂, incident upon a

stationary target particle of mass M2, as indicated in fig. 15.9. Let the product masses be

m1, m2, . . . , mN ′ . The 4-momenta of the reactants and products are

Pµ
1 =

(
E1 , P1

)
, Pµ

2 = M2

(
1 , 0

)
, Qµ

j =
(
εj , pj

)
. (15.169)

Note that E2
1 − P 2

1 = M2
1 and ε2j − p2

j = m2
j , with j ∈ {1, 2, . . . , N ′}.

Conservation of momentum means that

Pµ
1 + Pµ

2 =

N ′∑

j=1

Qµ
j . (15.170)

In particular, taking the µ = 0 component, we have

E1 +M2 =
N ′∑

j=1

εj , (15.171)

which certainly entails

E1 ≥
N ′∑

j=1

mj −M2 (15.172)

since εj = γj mj ≥ mj. But can the equality ever be achieved? This would only be the case

if γj = 1 for all j, i.e. the final velocities are all zero. But this itself is quite impossible,
since the initial state momentum is P .

To determine the threshold energy Ethr

1 , we compare the length of the total momentum
vector in the LAB and CM frames:

(P1 + P2)
2 = M2

1 +M2
2 + 2E1M2 (LAB) (15.173)

=

(
N ′∑

j=1

εCM

j

)2

(CM) . (15.174)
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Figure 15.9: A two-particle initial state, with a stationary target in the LAB frame, and an
N ′-particle final state.

Thus,

E1 =

(∑N ′

j=1 ε
CM

j

)2
−M2

1 −M2
2

2M2
(15.175)

and we conclude

E1 ≥ ETHR

1 =

(∑N ′

j=1mj

)2
−M2

1 −M2
2

2M2
. (15.176)

Note that in the CM frame it is possible for each εCM

j = mj.

Finally, we must have ETHR

1 ≥∑N ′

j=1mj −M2. This then requires

M1 +M2 ≤
N ′∑

j=1

mj . (15.177)

15.7.4 Transformation between frames

Consider a particle with 4-velocity uµ in frame K and consider a Lorentz transformation
between this frame and a frame K ′ moving relative to K with velocity V . We may write

uµ =
(
γ , γv cos θ , γv sin θ n̂⊥

)
, u′µ =

(
γ′ , γ′v′ cos θ′ , γ′v′ sin θ′ n̂′

⊥

)
. (15.178)

According to the general transformation rules of eqns. 15.50, 15.51, and 15.52, we may
write

γ = Γ γ′ + ΓV γ′v′ cos θ′ (15.179)

γv cos θ = ΓV γ′ + Γ γ′v′ cos θ′ (15.180)

γv sin θ = γ′v′ sin θ′ (15.181)

n̂⊥ = n̂′
⊥ , (15.182)

where the x̂ axis is taken to be V̂ , and where Γ ≡ (1− V 2)−1/2. Note that the last two of
these equations may be written as a single vector equation for the transverse components.
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Dividing the eqn. 15.181 by eqn. 15.180, we obtain the result

tan θ =
sin θ′

Γ
(

V
v′ + cos θ′

) . (15.183)

We can then use eqn. 15.179 to relate v′ and cos θ′:

γ′
−1

=
√

1− v′2 =
Γ

γ

(
1 + V v′ cos θ′

)
. (15.184)

Squaring both sides, we obtain a quadratic equation whose roots are

v′ =
−Γ 2 V cos θ′ ±

√
γ4 − Γ 2 γ2 (1− V 2 cos2θ′)

γ2 + Γ 2 V 2 cos2θ′
. (15.185)

CM frame mass and velocity

To find the velocity of the CM frame, simply write

Pµ
tot

=
N∑

i=1

Pµ
i =

(
N∑

i=1

γimi ,
N∑

i=1

γimi vi

)
(15.186)

≡ Γ M (1 , V ) . (15.187)

Then

M2 =

(
N∑

i=1

γimi

)2

−
(

N∑

i=1

γimi vi

)2

(15.188)

and

V =

∑N
i=1 γimi vi∑N

i=1 γimi

. (15.189)

15.7.5 Compton scattering

An extremely important example of relativistic scattering occurs when a photon scatters
off an electron: e− + γ −→ e− + γ (see fig. 15.10). Let us work in the rest frame of the
reactant electron. Then we have

Pµ
e = me (1, 0) , P̃µ

e = me (γ , γV ) (15.190)

for the initial and final 4-momenta of the electron. For the photon, we have

Pµ
γ = (ω , k) , P̃µ

γ = (ω̃ , k̃) , (15.191)

where we’ve set ~ = 1 as well. Conservation of 4-momentum entails

Pµ
γ − P̃µ

γ = P̃µ
e − Pµ

e . (15.192)
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Figure 15.10: Compton scattering of a photon and an electron.

Thus, (
ω − ω̃ , k − k̃

)
= me

(
γ − 1 , γV

)
. (15.193)

Squaring each side, we obtain
(
ω − ω̃

)2 −
(
k − k̃

)2
= 2ω ω̃ (cos θ − 1)

= m2
e

(
(γ − 1)2 − γ2V 2

)

= 2m2
e(1− γ)

= 2me

(
ω̃ − ω) . (15.194)

Here we have used |k| = ω for photons, and also (γ − 1)me = ω − ω̃, from eqn. 15.193.

Restoring the units ~ and c, we find the Compton formula

1

ω̃
− 1

ω
=

~

mec2
(
1− cos θ

)
. (15.195)

This is often expressed in terms of the photon wavelengths, as

λ̃− λ =
4π~

mec
sin2

(
1
2θ
)
, (15.196)

showing that the wavelength of the scattered light increases with the scattering angle in the
rest frame of the target electron.

15.8 Covariant Electrodynamics

We begin with the following expression for the Lagrangian density of charged particles
coupled to an electromagnetic field, and then show that the Euler-Lagrange equations re-
capitulate Maxwell’s equations. The Lagrangian density is

L = − 1

16π
Fµν F

µν − 1

c
jµA

µ . (15.197)
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Here, Aµ = (φ ,A) is the electromagnetic 4-potential , which combines the scalar field φ

and the vector field A into a single 4-vector. The quantity Fµν is the electromagnetic field

strength tensor and is given by

Fµν = ∂µAν − ∂νAµ . (15.198)

Note that as defined Fµν = −Fνµ is antisymmetric. Note that, if i = 1, 2, 3 is a spatial
index, then

F0i = −1

c

∂Ai

∂t
− ∂A0

∂xi
= Ei (15.199)

Fij =
∂Ai

∂xj
− ∂Aj

∂xi
= − ǫijkBk . (15.200)

Here we have used Aµ = (A0 , A) and Aµ = (A0 , −A), as well as ∂µ = (c−1∂t ,∇).

IMPORTANT : Since the electric and magnetic fields E and B are not part of a 4-vector,
we do not use covariant / contravariant notation for their components. Thus, Ei is the ith

component of the vector E. We will not write Ei with a raised index, but if we did, we’d
mean the same thing: Ei = Ei. By contrast, for the spatial components of a four-vector

like Aµ, we have Ai = −Ai.

Explicitly, then, we have

Fµν =




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 , Fµν =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 ,

(15.201)

where Fµν = gµα gνβ Fαβ . Note that when comparing Fµν and Fµν , the components with
one space and one time index differ by a minus sign. Thus,

− 1

16π
Fµν F

µν =
E2 −B2

8π
, (15.202)

which is the electromagnetic Lagrangian density. The j ·A term accounts for the interaction
between matter and electromagnetic degrees of freedom. We have

1

c
jµA

µ = ̺φ− 1

c
j ·A , (15.203)

where

jµ =

(
c̺
j

)
, Aµ =

(
φ
A

)
, (15.204)

where ̺ is the charge density and j is the current density. Charge conservation requires

∂µ j
µ =

∂̺

∂t
+ ∇·j = 0 . (15.205)
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We shall have more to say about this further on below.

Let us now derive the Euler-Lagrange equations for the action functional,

S = −c−1

∫
d4x

(
1

16π
Fµν F

µν + c−1 jµA
µ

)
. (15.206)

We first vary with respect to Aµ. Clearly

δFµν = ∂µ δAν − ∂ν δAµ . (15.207)

We then have

δL =

(
1

4π
∂µF

µν − c−1jν
)
δAν − ∂µ

(
1

4π
Fµν δAν

)
. (15.208)

Ignoring the boundary term, we obtain Maxwell’s equations,

∂µ F
µν = 4πc−1 jν (15.209)

The ν = k component of these equations yields

∂0 F
0k + ∂i F

jk = −∂0Ek − ǫjkl ∂j Bl = 4πc−1 jk , (15.210)

which is the k component of the Maxwell-Ampère law,

∇×B =
4π

c
j +

1

c

∂E

∂t
. (15.211)

The ν = 0 component reads

∂i F
i0 =

4π

c
j0 ⇒ ∇·E = 4π̺ , (15.212)

which is Gauss’s law. The remaining two Maxwell equations come ‘for free’ from the very
definitions of E and B:

E = −∇A0 − 1

c

∂A

∂t
(15.213)

B = ∇×A , (15.214)

which imply

∇×E = −1

c

∂B

∂t
(15.215)

∇ ·B = 0 . (15.216)

15.8.1 Lorentz force law

This has already been worked out in chapter 7. Here we reiterate our earlier derivation.
The 4-current may be written as

jµ(x, t) = c
∑

n

qn

∫
dτ

dXµ
n

dτ
δ(4)(x−X) . (15.217)
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Thus, writing Xµ
n =

(
ct ,Xn(t)

)
, we have

j0(x, t) =
∑

n

qn c δ
(
x−Xn(t)

)
(15.218)

j(x, t) =
∑

n

qn Ẋn(t) δ
(
x−Xn(t)

)
. (15.219)

The Lagrangian for the matter-field interaction term is then

L = −c−1

∫
d3x
(
j0A0 − j ·A

)

= −
∑

n

[
qn φ(Xn, t)−

qn
c

A(Xn, t) · Ẋn

]
, (15.220)

where φ = A0. For each charge qn, this is equivalent to a particle with velocity-dependent
potential energy

U(x, t) = q φ(x, t) − q

c
A(r, t) · ẋ , (15.221)

where x = Xn.

Let’s work out the equations of motion. We assume a kinetic energy T = 1
2mẋ2 for the

charge. We then have
d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
(15.222)

with L = T − U , which gives

m ẍ +
q

c

dA

dt
= −q∇φ+

q

c
∇(A · ẋ) , (15.223)

or, in component notation,

mẍi +
q

c

∂Ai

∂xj
ẋj +

q

c

∂Ai

∂t
= −q ∂φ

∂xi
+
q

c

∂Aj

∂xi
ẋj , (15.224)

which is to say

mẍi = −q ∂φ
∂xi
− q

c

∂Ai

∂t
+
q

c

(
∂Aj

∂xi
− ∂Ai

∂xj

)
ẋj . (15.225)

It is convenient to express the cross product in terms of the completely antisymmetric tensor
of rank three, ǫijk:

Bi = ǫijk
∂Ak

∂xj
, (15.226)

and using the result
ǫijk ǫimn = δjm δkn − δjn δkm , (15.227)

we have ǫijk Bi = ∂jAk − ∂kAj, and

mẍi = −q ∂φ
∂xi
− q

c

∂Ai

∂t
+
q

c
ǫijk ẋ

j Bk , (15.228)
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Figure 15.11: Homer celebrates the manifest gauge invariance of classical electromagnetic
theory.

or, in vector notation,

m ẍ = −q∇φ− q

c

∂A

∂t
+
q

c
ẋ× (∇×A)

= qE +
q

c
ẋ×B , (15.229)

which is, of course, the Lorentz force law.

15.8.2 Gauge invariance

The action S = c−1
∫
d4xL admits a gauge invariance. Let Aµ → Aµ + ∂µΛ, where Λ(x, t)

is an arbitrary scalar function of spacetime coordinates. Clearly

Fµν → Fµν +
(
∂µ∂νΛ− ∂ν∂µΛ

)
= Fµν , (15.230)

and hence the fields E and B remain invariant under the gauge transformation, even though
the 4-potential itself changes. What about the matter term? Clearly

−c−1 jµAµ → − c−1 jµ Aµ − c−1 jµ ∂µΛ

= −c−1 jµAµ + c−1Λ ∂µ j
µ − ∂µ

(
c−1Λ jµ

)
. (15.231)

Once again we ignore the boundary term. We may now invoke charge conservation to write
∂µ jµ = 0, and we conclude that the action is invariant! Woo hoo! Note also the very deep
connection

gauge invariance ←→ charge conservation . (15.232)
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15.8.3 Transformations of fields

One last detail remains, and that is to exhibit explicitly the Lorentz transformation prop-
erties of the electromagnetic field. For the case of vectors like Aµ, we have

Aµ = Lµ
ν A

′ ν . (15.233)

The E and B fields, however, appear as elements in the field strength tensor Fµν . Clearly
this must transform as a tensor:

Fµν = Lµ
α L

ν
β F

′ αβ = Lµ
α F

′ αβ Lt
β

ν . (15.234)

We can write a general Lorentz transformation as a product of a rotation Lrot and a boost

Lboost. Let’s first see how rotations act on the field strength tensor. We take

L = Lrot =

(
11×1 01×3

03×1 R3×3

)
, (15.235)

where RtR = I, i.e. R ∈ O(3) is an orthogonal matrix. We must compute

Lµ
α F

′ αβ Lt
β

ν =

(
1 0

0 Rij

)(
0 −E′

k

E′
j − ǫjkmB′

m

)(
1 0
0 Rt

kl

)

=

(
0 −E′

kR
t
kl

Rij E
′
j − ǫjkmRij Rlk B

′
m

)
. (15.236)

Thus, we conclude

El = Rlk E
′
k (15.237)

ǫilnBn = ǫjkmRij Rlk B
′
m . (15.238)

Now for any 3× 3 matrix R we have

ǫjksRij Rlk Rrs = det(R) ǫilr , (15.239)

and therefore

ǫjkmRij Rlk B
′
m = ǫjkmRij Rlk RnmRnsB

′
s

= det(R) ǫilnRnsB
′
s , (15.240)

Therefore,
Ei = Rij E

′
j , Bi = det(R) · Rij B

′
j . (15.241)

For any orthogonal matrix, RtR = I gives that det(R) = ±1. The extra factor of det(R)
in the transformation properties of B is due to the fact that the electric field transforms as
a vector , while the magnetic field transforms as a pseudovector . Under space inversion, for
example, where R = −I, the electric field is odd under this transformation (E → −E) while
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the magnetic field is even (B → +B). Similar considerations hold in particle mechanics for
the linear momentum, p (a vector) and the angular momentum L = r×p (a pseudovector).
The analogy is not complete, however, because while both p and L are odd under the
operation of time-reversal, E is even while B is odd.

OK, so how about boosts? We can write the general boost, from eqn. 15.37, as

L =

(
γ γβ̂

γβ̂ I + (γ − 1)Pβ

)
(15.242)

where Pβ
ij = β̂i β̂j is the projector onto the direction of β. We now compute

Lµ
α F

′ αβ Lt
β

ν =

(
γ γβt

γβ I + (γ − 1)P

)(
0 −E′ t

E′ − ǫjkmB′
m

)(
γ γβt

γβ I + (γ − 1)P

)
. (15.243)

Carrying out the matrix multiplications, we obtain

E = γ(E′ − β ×B′)− (γ − 1)(β̂ ·E′)β̂ (15.244)

B = γ(B′ + β ×E′)− (γ − 1)(β̂ ·B′)β̂ . (15.245)

Expressed in terms of the components E‖, E⊥, B‖, and B⊥, one has

E‖ = E′
‖ , E⊥ = γ

(
E′

⊥ − β ×B′
⊥

)
(15.246)

B‖ = B′
‖ , B⊥ = γ

(
B′

⊥ + β ×E′
⊥

)
. (15.247)

Recall that for any vector ξ, we write

ξ‖ = β̂ · ξ (15.248)

ξ⊥ = ξ − (β̂ · ξ) β̂ , (15.249)

so that β̂ · ξ⊥ = 0.

15.8.4 Invariance versus covariance

We saw that the laws of electromagnetism were gauge invariant . That is, the solutions to
the field equations did not change under a gauge transformation Aµ → Aµ + ∂µΛ. With
respect to Lorentz transformations, however, the theory is Lorentz covariant . This means
that Maxwell’s equations in different inertial frames take the exact same form, ∂µFµν =
4πc−1jν , but that both the fields and the sources transform appropriately under a change
in reference frames. The sources are described by the current 4-vector jµ = (c̺ , j) and
transform as

c̺ = γc̺′ + γβj′‖ (15.250)

j‖ = γβc̺′ + γj′‖ (15.251)

j⊥ = j ′⊥ . (15.252)
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The fields transform according to eqns. 15.246 and 15.247.

Consider, for example, a static point charge q located at the origin in the frame K ′, which
moves with velocity u x̂ with respect to K. An observer in K ′ measures a charge density
̺′(x′, t′) = q δ(x′). The electric and magnetic fields in the K ′ frame are then E′ = q r̂′/r′ 2

and B′ = 0. For an observer in the K frame, the coordinates transform as

ct = γct′ + γβx′ ct′ = γct− γβx (15.253)

x = γβct′ + γx′ x′ = −γβct+ γx , (15.254)

as well as y = y′ and z = z′. The observer in the K frame sees instead a charge at
xµ = (ct , ut , 0 , 0) and both a charge density as well as a current density:

̺(x, t) = γ̺(x′, t′) = q δ(x− ut) δ(y) δ(z) (15.255)

j(x, t) = γβc ̺(x′, t′) x̂ = u q δ(x− ut) δ(y) δ(z) x̂ . (15.256)

OK, so much for the sources. How about the fields? Expressed in terms of Cartesian
coordinates, the electric field in K ′ is given by

E′(x′, t′) = q
x′x̂ + y′ŷ + z′ẑ

(
x′ 2 + y′ 2 + z′ 2

)3/2
. (15.257)

From eqns. 15.246 and 15.247, we have Ex = E′
x and Bx = B′

x = 0. Furthermore, we have
Ey = γE′

y, Ez = γE′
z, By = −γβE′

z, and Bz = γβE′
y. Thus,

E(x, t) = γq
(x− ut)x̂ + yŷ + zẑ

[
γ2(x− ut)2 + y2 + z2

]3/2
(15.258)

B(x, t) =
γu

c
q

yẑ − zŷ
[
γ2(x− ut)2 + y2 + z2

]3/2
. (15.259)

Let us define

R(t) = (x− ut) x̂ + y ŷ + z ẑ . (15.260)

We further define the angle θ ≡ cos−1
(
β̂ · R̂

)
. We may then write

E(x, t) =
qR

R3
· 1− β2

(
1− β2 sin2θ

)3/2

B(x, t) =
q β̂ ×R

R3
· 1− β2

(
1− β2 sin2θ

)3/2
. (15.261)

The fields are therefore enhanced in the transverse directions: E⊥/E‖ = γ3.
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Figure 15.12: A relativistic runner carries a pole of proper length ℓ and runs into a barn of
proper length ℓ.

15.9 Appendix I : The Pole, the Barn, and Rashoman

Akira Kurosawa’s 1950 cinematic masterpiece, Rashoman, describes a rape, murder, and
battle from four different and often contradictory points of view. It poses deep questions
regarding the nature of truth. Psychologists sometimes refer to problems of subjective
perception as the Rashoman effect . In literature, William Faulkner’s 1929 novel, The Sound

and the Fury , which describes the tormented incestuous life of a Mississippi family, also is
told from four points of view. Perhaps Faulkner would be a more apt comparison with
Einstein, since time plays an essential role in his novel. For example, Quentin’s watch,
given to him by his father, represents time and the sweep of life’s arc (“Quentin, I give you

the mausoleum of all hope and desire...”). By breaking the watch, Quentin symbolically
attempts to escape time and fate. One could draw an analogy to Einstein, inheriting a watch
from those who came before him, which he too broke – and refashioned. Did Faulkner know
of Einstein? But I digress.

Consider a relativistic runner carrying a pole of proper length ℓ, as depicted in fig. 15.12.
He runs toward a barn of proper length ℓ at velocity u = cβ. Let the frame of the barn
be K and the frame of the runner be K ′. Recall that the Lorentz transformations between
frames K and K ′ are given by

ct = γct′ + γx′ ct′ = γct− γβx (15.262)

x = γβct′ + γx′ x′ = −γβct+ γx . (15.263)

We define the following points. Let A denote the left door of the barn and B the right
door. Furthermore, let P denote the left end of the pole and Q its right end. The spacetime
coordinates for these points in the two frames are clearly .

A = (ct , 0) P ′ = (ct′ , 0) (15.264)

B = (ct , ℓ) Q′ = (ct′ , ℓ) (15.265)

We now compute A′ and B′ in frame K ′, as well as P and Q in frame K:

A′ = (γct , −γβct) B′ = (γct− γβℓ , −γβct+ γℓ) (15.266)

≡ (ct′ , −βct′) ≡ (ct′ , −βct′ + γ−1ℓ) . (15.267)
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Similarly,

P = (γct′ , γβct′) Q = (γct′ + γβℓ , γβct′ + γℓ) (15.268)

≡ (ct , βct) ≡ (ct , βct+ γ−1ℓ) . (15.269)

We now define four events, by the coincidences of A and B with P and Q:

• Event I : The right end of the pole enters the left door of the barn. This is described
by Q = A in frame K and by Q′ = A′ in frame K ′.

• Event II : The right end of the pole exits the right door of the barn. This is described
by Q = B in frame K and by Q′ = B′ in frame K ′.

• Event III : The left end of the pole enters the left door of the barn. This is described
by P = A in frame K and by P ′ = A′ in frame K ′.

• Event IV : The left end of the pole exits the right door of the barn. This is described
by P = B in frame K and by P ′ = B′ in frame K ′.

Mathematically, we have in frame K that

I : Q = A ⇒ tI = − ℓ

γu
(15.270)

II : Q = B ⇒ tII = (γ − 1)
ℓ

γu
(15.271)

III : P = A ⇒ tIII = 0 (15.272)

IV : P = B ⇒ tIV =
ℓ

u
(15.273)

In frame K ′, however

I : Q′ = A′ ⇒ t′
I
= − ℓ

u
(15.274)

II : Q′ = B′ ⇒ t′
II

= −(γ − 1)
ℓ

γu
(15.275)

III : P ′ = A′ ⇒ t′
III

= 0 (15.276)

IV : P ′ = B′ ⇒ t′
IV

=
ℓ

γu
(15.277)

Thus, to an observer in frame K, the order of events is I, III, II, and IV, because

tI < tIII < tII < tIV . (15.278)

For tIII < t < tII, he observes that the pole is entirely in the barn. Indeed, the right door can
start shut and the left door open, and sensors can automatically and, for the purposes of
argument, instantaneously trigger the closing of the left door immediately following event
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Figure 15.13: An object of proper length ℓ and moving with velocity u, when photographed
from an angle α, appears to have a length ℓ̃.

III and the opening of the right door immediately prior to event II. So the pole can be
inside the barn with both doors shut!

But now for the Rashoman effect : according to the runner, the order of events is I, II, III,
and IV, because

t′
I
< t′

II
< t′

III
< t′

IV
. (15.279)

At no time does the runner observe the pole to be entirely within the barn. Indeed, for
t′
II
< t′ < t′

III
, both ends of the pole are sticking outside of the barn!

15.10 Appendix II : Photographing a Moving Pole

What is the length ℓ of a moving pole of proper length ℓ0 as measured by an observer at

rest? The answer would appear to be γ−1ℓ0, as we computed in eqn. 15.71. However, we

should be more precise when we we speak of ‘length’. The relation ℓ(β) = γ−1ℓ0 tells us
the instantaneous end-to-end distance as measured in the observer’s rest frame K. But an
actual experiment might not measure this quantity.

For example, suppose a relativistic runner carrying a pole of proper length ℓ0 runs past a
measuring rod which is at rest in the rest frame K of an observer. The observer takes a

photograph of the moving pole as it passes by. Suppose further that the angle between the
observer’s line of sight and the velocity u of the pole is α, as shown in fig. 15.13. What is
the apparent length ℓ(α, u) of the pole as observed in the photograph? (I.e. the pole will
appear to cover a portion of the measuring rod which is of length ℓ.)
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The point here is that the shutter of the camera is very fast (otherwise the image will appear
blurry). In our analysis we will assume the shutter opens and closes instantaneously. Let’s
define two events:

• Event 1 : photon γ1 is emitted by the rear end of the pole.

• Event 2 : photon γ2 is emitted by the front end of the pole.

Both photons must arrive at the camera’s lens simultaneously. Since, as shown in the figure,
the path of photon #1 is longer by a distance ℓ cosα, where ℓ is the apparent length of the
pole, γ2 must be emitted a time ∆t = c−1ℓ cosα after γ1. Now if we Lorentz transform from
frame K to frame K ′, we have

∆x′ = γ∆x− γβ∆t . (15.280)

But ∆x′ = ℓ0 is the proper length of the pole, and ∆x = ℓ is the apparent length. With
c∆t = ℓ cosα, then, we have

ℓ =
γ−1 ℓ0

1− β cosα
. (15.281)

When α = 90◦, we recover the familiar Lorentz-Fitzgerald contraction ℓ(β) = γ−1 ℓ0. This

is because the photons γ1 and γ2 are then emitted simultaneously, and the photograph
measures the instantaneous end-to-end distance of the pole as measured in the observer’s
rest frame K. When cosα 6= 0, however, the two photons are not emitted simultaneously,
and the apparent length is given by eqn. 15.281.


