
Chapter 14

Continuum Mechanics

14.1 Strings

Consider a string of linear mass density µ(x) under tension τ(x).1 Let the string move in a
plane, such that its shape is described by a smooth function y(x), the vertical displacement
of the string at horizontal position x, as depicted in fig. 14.1. The action is a functional
of the height y(x, t), where the coordinate along the string, x, and time, t, are the two
independent variables. Consider a differential element of the string extending from x to
x+ dx. The change in length relative to the unstretched (y = 0) configuration is

dℓ =
√
dx2 + dy2 − dx =

1

2

(
∂y

∂x

)2

dx+ O
(
dx2
)
. (14.1)

The differential potential energy is then

dU = τ(x) dℓ = 1
2 τ(x)

(
∂y

∂x

)2

dx . (14.2)

The differential kinetic energy is simply

dT = 1
2 µ(x)

(
∂y

∂t

)2

dx . (14.3)

We can then write

L =

∫
dxL , (14.4)

where the Lagrangian density L is

L(y, ẏ, y′;x, t) = 1
2 µ(x)

(
∂y

∂t

)2

− 1
2 τ(x)

(
∂y

∂x

)2

. (14.5)

1As an example of a string with a position-dependent tension, consider a string of length ℓ freely suspended
from one end at z = 0 in a gravitational field. The tension is then τ (z) = µg (ℓ − z).
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Figure 14.1: A string is described by the vertical displacement field y(x, t).

The action for the string is now a double integral,

S =

t
b∫

ta

dt

x
b∫

xa

dx L(y, ẏ, y′;x, t) , (14.6)

where y(x, t) is the vertical displacement field. Typically, we have L = 1
2µẏ

2 − 1
2τy

′2. The
first variation of S is

δS =

x
b∫

xa

dx

t
b∫

ta

dt

[
∂L
∂y

− ∂

∂x

(
∂L
∂y′

)
− ∂

∂t

(
∂L
∂ẏ

)]
δy (14.7)

+

x
b∫

xa

dx

[
∂L
∂ẏ

δy

]t=t
b

t=ta

+

t
b∫

ta

dt

[
∂L
∂y′

δy

]x=xa

x=x
b

, (14.8)

which simply recapitulates the general result from eqn. 14.203. There are two boundary
terms, one of which is an integral over time and the other an integral over space. The first
boundary term vanishes provided δy(x, ta) = δy(x, tb) = 0. The second boundary term
vanishes provided τ(x) y′(x) δy(x) = 0 at x = xa and x = xb, for all t. Assuming τ(x) does
not vanish, this can happen in one of two ways: at each endpoint either y(x) is fixed or
y′(x) vanishes.

Assuming that either y(x) is fixed or y′(x) = 0 at the endpoints x = xa and x = xb, the
Euler-Lagrange equations for the string are obtained by setting δS = 0:

0 =
δS

δy(x, t)
=
∂L
∂y

− ∂

∂t

(
∂L
∂ẏ

)
− ∂

∂x

(
∂L
∂y′

)

=
∂

∂x

[
τ(x)

∂y

∂x

]
− µ(x)

∂2y

∂t2
, (14.9)

where y′ = ∂y
∂x and ẏ = ∂y

∂t . When τ(x) = τ and µ(x) = µ are both constants, we obtain the
Helmholtz equation,

1

c2
∂2y

∂t2
− ∂2y

∂x2
= 0 , (14.10)
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which is the wave equation for the string, where c =
√
τ/µ has dimensions of velocity. We

will now see that c is the speed of wave propagation on the string.

14.2 d’Alembert’s Solution to the Wave Equation

Let us define two new variables,

u ≡ x− ct , v ≡ x+ ct . (14.11)

We then have

∂

∂x
=
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
=

∂

∂u
+

∂

∂v
(14.12)

1

c

∂

∂t
=

1

c

∂u

∂t

∂

∂u
+

1

c

∂v

∂t

∂

∂v
= − ∂

∂u
+

∂

∂v
. (14.13)

Thus,

1

c2
∂2

∂t2
− ∂2

∂x2
= −4

∂2

∂u ∂v
. (14.14)

Thus, the wave equation may be solved:

∂2y

∂u ∂v
= 0 =⇒ y(u, v) = f(u) + g(v) , (14.15)

where f(u) and g(v) are arbitrary functions. For the moment, we work with an infinite
string, so we have no spatial boundary conditions to satisfy. Note that f(u) describes a
right-moving disturbance, and g(v) describes a left-moving disturbance:

y(x, t) = f(x− ct) + g(x+ ct) . (14.16)

We do, however, have boundary conditions in time. At t = 0, the configuration of the string
is given by y(x, 0), and its instantaneous vertical velocity is ẏ(x, 0). We then have

y(x, 0) = f(x) + g(x) (14.17)

ẏ(x, 0) = −c f ′(x) + c g′(x) , (14.18)

hence

f ′(x) = 1
2 y

′(x, 0) − 1
2c ẏ(x, 0) (14.19)

g′(x) = 1
2 y

′(x, 0) + 1
2c ẏ(x, 0) , (14.20)
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and integrating we obtain the right and left moving components

f(ξ) = 1
2 y(ξ, 0) − 1

2c

ξ∫

0

dξ′ ẏ(ξ′, 0) − C (14.21)

g(ξ) = 1
2 y(ξ, 0) + 1

2c

ξ∫

0

dξ′ ẏ(ξ′, 0) + C , (14.22)

where C is an arbitrary constant. Adding these together, we obtain the full solution

y(x, t) = 1
2

[
y(x− ct, 0) + y(x+ ct, 0)

]
+ 1

2c

x+ct∫

x−ct

dξ ẏ(ξ, 0) , (14.23)

valid for all times.

14.2.1 Energy density and energy current

The Hamiltonian density for a string is

H = Π ẏ − L , (14.24)

where

Π =
∂L
∂ẏ

= µ ẏ (14.25)

is the momentum density. Thus,

H =
Π2

2µ
+ 1

2τ y
′2 . (14.26)

Expressed in terms of ẏ rather than Π, this is the energy density E ,

E = 1
2µ ẏ

2 + 1
2τ y

′2 . (14.27)

We now evaluate Ė for a solution to the equations of motion:

∂E
∂t

= µ
∂y

∂t

∂2y

∂t2
+ τ

∂y

∂x

∂2y

∂t ∂x

= τ
∂y

∂t

∂

∂x

(
τ
∂y

∂x

)
+ τ

∂y

∂x

∂2y

∂t ∂x

=
∂

∂x

[
τ
∂y

∂x

∂y

∂t

]
≡ −∂jE

∂x
, (14.28)

where the energy current density (or energy flux) is

jE = −τ ∂y
∂x

∂y

∂t
. (14.29)
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Figure 14.2: Reflection of a pulse at an interface at x = 0, with y(0, t) = 0.

We therefore have that solutions of the equation of motion also obey the energy continuity

equation
∂E
∂t

+
∂j

E

∂x
= 0 . (14.30)

Let us integrate the above equation between points x1 and x2. We obtain

∂

∂t

x2∫

x1

dx E(x, t) = −
x2∫

x1

dx
∂j

E
(x, t)

∂x
= jE(x1, t) − jE(x2, t) , (14.31)

which says that the time rate of change of the energy contained in the interval
[
x1, x2

]
is

equal to the difference between the entering and exiting energy flux.

When τ(x) = τ and µ(x) = µ, we have

y(x, t) = f(x− ct) + g(x+ ct) (14.32)

and we find

E(x, t) = τ [f ′(x− ct)
]2

+ τ
[
g′(x+ ct)

]2
(14.33)

jE(x, t) = cτ
[
f ′(x− ct)

]2 − cτ
[
g′(x+ ct)

]2
, (14.34)

which are each sums over right-moving and left-moving contributions.

14.2.2 Reflection at an interface

Consider a semi-infinite string on the interval
[
0,∞

]
, with y(0, t) = 0. We can still invoke

d’Alembert’s solution, y(x, t) = f(x− ct) + g(x+ ct), but we must demand

y(0, t) = f(−ct) + g(ct) = 0 ⇒ f(ξ) = −g(−ξ) . (14.35)

Thus,
y(x, t) = g(ct+ x) − g(ct − x) . (14.36)

Now suppose g(ξ) describes a pulse, and is nonzero only within a neighborhood of ξ = 0.
For large negative values of t, the right-moving part, −g(ct − x), is negligible everywhere,
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Figure 14.3: Reflection of a pulse at an interface at x = 0, with y′(0, t) = 0.

since x > 0 means that the argument ct − x is always large and negative. On the other
hand, the left moving part g(ct + x) is nonzero for x ≈ −ct > 0. Thus, for t < 0 we have
a left-moving pulse incident from the right. For t > 0, the situation is reversed, and the
left-moving component is negligible, and we have a right moving reflected wave. However,
the minus sign in eqn. 14.35 means that the reflected wave is inverted.

If instead of fixing the endpoint at x = 0 we attach this end of the string to a massless ring
which frictionlessly slides up and down a vertical post, then we must have y′(0, t) = 0, else
there is a finite vertical force on the massless ring, resulting in infinite acceleration. We
again write y(x, t) = f(x− ct) + g(x+ ct), and we invoke

y′(0, t) = f ′(−ct) + g′(ct) ⇒ f ′(ξ) = −g′(−ξ) , (14.37)

which, upon integration, yields f(ξ) = g(−ξ), and therefore

y(x, t) = g(ct+ x) + g(ct − x) . (14.38)

The reflected pulse is now ‘right-side up’, in contrast to the situation with a fixed endpoint.

14.2.3 Mass point on a string

Next, consider the case depicted in Fig. 14.4, where a point mass m is affixed to an infinite
string at x = 0. Let us suppose that at large negative values of t, a right moving wave
f(ct − x) is incident from the left. The full solution may then be written as a sum of
incident, reflected, and transmitted waves:

x < 0 : y(x, t) = f(ct− x) + g(ct+ x) (14.39)

x > 0 : y(x, t) = h(ct− x) . (14.40)

At x = 0, we invoke Newton’s second Law, F = ma:

mÿ(0, t) = τ y′(0+, t) − τ y′(0−, t) . (14.41)

Any discontinuity in the derivative y′(x, t) at x = 0 results in an acceleration of the point
mass. Note that

y′(0−, t) = −f ′(ct) + g′(ct) , y′(0+, t) = −h′(ct) . (14.42)
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Figure 14.4: Reflection and transmission at an impurity. A point mass m is affixed to an
infinite string at x = 0.

Further invoking continuity at x = 0, i.e. y(0−, t) = y(0+, t), we have

h(ξ) = f(ξ) + g(ξ) , (14.43)

and eqn. 14.41 becomes

g′′(ξ) +
2τ

mc2
g′(ξ) = −f ′′(ξ) . (14.44)

We solve this equation by Fourier analysis:

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ , f̂(k) =

∞∫

−∞

dξ f(ξ) e−ikξ . (14.45)

Defining κ ≡ 2τ/mc2 = 2µ/m, we have

[
− k2 + iκk

]
ĝ(k) = k2 f̂(k) . (14.46)

We then have

ĝ(k) = − k

k − iκ
f̂(k) ≡ r(k) f̂(k) (14.47)

ĥ(k) =
−iκ
k − iκ

f̂(k) ≡ t(k) f̂(k) , (14.48)

where r(k) and t(k) are the reflection and transmission amplitudes, respectively. Note that

t(k) = 1 + r(k) . (14.49)
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In real space, we have

h(ξ) =

∞∫

−∞

dk

2π
t(k) f̂(k) eikξ (14.50)

=

∞∫

−∞

dξ′

[ ∞∫

−∞

dk

2π
t(k) eik(ξ−ξ′)

]
f(ξ′) (14.51)

≡
∞∫

−∞

dξ′ T (ξ − ξ′) f(ξ′) , (14.52)

where

T (ξ − ξ′) =

∞∫

−∞

dk

2π
t(k) eik(ξ−ξ′) , (14.53)

is the transmission kernel in real space. For our example with r(k) = −iκ/(k − iκ), the
integral is done easily using the method of contour integration:

T (ξ − ξ′) =

∞∫

−∞

dk

2π

−iκ
k − iκ

eik(ξ−ξ′) = κ e−κ(ξ−ξ′) Θ(ξ − ξ′) . (14.54)

Therefore,

h(ξ) = κ

ξ∫

−∞

dξ′ e−κ(ξ−ξ′) f(ξ′) , (14.55)

and of course g(ξ) = h(ξ) − f(ξ). Note that m = ∞ means κ = 0, in which case r(k) = −1
and t(k) = 0. Thus we recover the inversion of the pulse shape under reflection found
earlier.

For example, let the incident pulse shape be f(ξ) = bΘ
(
a− |ξ|

)
. Then

h(ξ) = κ

ξ∫

−∞

dξ′ e−κ(ξ−ξ′) bΘ(a− ξ′)Θ(a+ ξ′)

= b e−κξ
[
eκ min(a,ξ) − e−κa

]
Θ(ξ + a) . (14.56)

Taking cases,

h(ξ) =





0 if ξ < −a
b
(
1 − e−κ(a+ξ)

)
if − a < ξ < a

2b e−κξ sinh(κa) if ξ > a .

(14.57)

In Fig. 14.5 we show the reflection and transmission of this square pulse for two different
values of κa.
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Figure 14.5: Reflection and transmission of a square wave pulse by a point mass at x = 0
The configuration of the string is shown for six different times, for κa = 0.5 (left panel)
and κa = 5.0 (right panel). Note that the κa = 0.5 case, which corresponds to a large mass
m = 2µ/κ, results in strong reflection with inversion, and weak transmission. For large κ,
corresponding to small mass m, the reflection is weak and the transmission is strong.

14.2.4 Interface between strings of different mass density

Consider the situation in fig. 14.6, where the string for x < 0 is of density µL and for x > 0
is of density µR. The d’Alembert solution in the two regions, with an incoming wave from
the left, is

x < 0: y(x, t) = f(cLt− x) + g(cLt+ x) (14.58)

x > 0: y(x, t) = h(cRt− x) . (14.59)

At x = 0 we have

f(cLt) + g(cLt) = h(cRt) (14.60)

−f ′(cLt) + g′(cLt) = −h′(cRt) , (14.61)

where the second equation follows from τ y′(0+, t) = τ y′(0−, t), so there is no finite verti-
cal force on the infinitesimal interval bounding x = 0, which contains infinitesimal mass.
Defining α ≡ cR/cL, we integrate the second of these equations and have

f(ξ) + g(ξ) = h(α ξ) (14.62)

f(ξ) − g(ξ) = α−1 h(α ξ) . (14.63)
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Figure 14.6: String formed from two semi-infinite regions of different densities..

Note that y(±∞, 0) = 0 fixes the constant of integration. The solution is then

g(ξ) =
α− 1

α+ 1
f(ξ) (14.64)

h(ξ) =
2α

α+ 1
f(ξ/α) . (14.65)

Thus,

x < 0: y(x, t) = f
(
cLt− x

)
+

(
α− 1

α+ 1

)
f
(
cLt+ x

)
(14.66)

x > 0: y(x, t) =
2α

α+ 1
f
(
(cRt− x)/α

)
. (14.67)

It is instructive to compute the total energy in the string. For large negative values of the
time t, the entire disturbance is confined to the region x < 0. The energy is

E(−∞) = τ

∞∫

−∞

dξ
[
f ′(ξ)

]2
. (14.68)

For large positive times, the wave consists of the left-moving reflected g(ξ) component in
the region x < 0 and the right-moving transmitted component h(ξ) in the region x > 0.
The energy in the reflected wave is

EL(+∞) = τ

(
α− 1

α+ 1

)2 ∞∫

−∞

dξ
[
f ′(ξ)

]2
. (14.69)

For the transmitted portion, we use

y′(x > 0, t) =
2

α+ 1
f ′
(
(cRt− x)/α

)
(14.70)
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to obtain

ER(∞) =
4τ

(α+ 1)2

∞∫

−∞

dξ
[
f ′(ξ/α)

]2

=
4ατ

(α+ 1)2

∞∫

−∞

dξ
[
f ′(ξ)

]2
. (14.71)

Thus, EL(∞) + ER(∞) = E(−∞), and energy is conserved.

14.3 Finite Strings : Bernoulli’s Solution

Suppose xa = 0 and xb = L are the boundaries of the string, where y(0, t) = y(L, t) = 0.
Again we write

y(x, t) = f(x− ct) + g(x+ ct) . (14.72)

Applying the boundary condition at xa = 0 gives, as earlier,

y(x, t) = g(ct+ x) − g(ct − x) . (14.73)

Next, we apply the boundary condition at xb = L, which results in

g(ct + L) − g(ct− L) = 0 =⇒ g(ξ) = g(ξ + 2L) . (14.74)

Thus, g(ξ) is periodic, with period 2L. Any such function may be written as a Fourier sum,

g(ξ) =

∞∑

n=1

{
An cos

(
nπξ

L

)
+ Bn sin

(
nπξ

L

)}
. (14.75)

The full solution for y(x, t) is then

y(x, t) = g(ct+ x) − g(ct − x)

=

(
2

µL

)1/2 ∞∑

n=1

sin

(
nπx

L

){
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

)}
, (14.76)

where An =
√

2µLBn and Bn = −√
2µLAn. This is known as Bernoulli’s solution.

We define the functions

ψn(x) ≡
(

2

µL

)1/2

sin

(
nπx

L

)
. (14.77)

We also write

kn ≡ nπx

L
, ωn ≡ nπc

L
, n = 1, 2, 3, . . . ,∞ . (14.78)
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Thus, ψn(x) =
√

2/µL sin(knx) has (n + 1) nodes at x = jL/n, for j ∈ {0, . . . , n}. Note
that

〈
ψm

∣∣ψn

〉
≡

L∫

0

dxµψm(x)ψn(x) = δmn . (14.79)

Furthermore, this basis is complete:

µ

∞∑

n=1

ψn(x)ψn(x′) = δ(x− x′) . (14.80)

Our general solution is thus equivalent to

y(x, 0) =
∞∑

n=1

An ψn(x) (14.81)

ẏ(x, 0) =

∞∑

n=1

nπc

L
Bn ψn(x) . (14.82)

The Fourier coefficients {An, Bn} may be extracted from the initial data using the orthonor-
mality of the basis functions and their associated resolution of unity:

An =

L∫

0

dxµψn(x) y(x, 0) (14.83)

Bn =
L

nπc

L∫

0

dxµψn(x) ẏ(x, 0) . (14.84)

As an example, suppose our initial configuration is a triangle, with

y(x, 0) =





2b
L x if 0 ≤ x ≤ 1

2L

2b
L (L− x) if 1

2L ≤ x ≤ L ,

(14.85)

and ẏ(x, 0) = 0. Then Bn = 0 for all n, while

An =

(
2µ

L

)1/2

· 2b

L

{ L/2∫

0

dxx sin

(
nπx

L

)
+

L∫

L/2

dx (L− x) sin

(
nπx

L

)}

= (2µL)1/2 · 4b

n2π2
sin
(

1
2nπ

)
δn,odd , (14.86)

after changing variables to x = Lθ/nπ and using θ sin θ dθ = d
(
sin θ − θ cos θ

)
. Another

way to write this is to separately give the results for even and odd coefficients:

A2k = 0 , A2k+1 =
4b

π2
(2µL)1/2 · (−1)k

(2k + 1)2
. (14.87)
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Figure 14.7: Evolution of a string with fixed ends starting from an isosceles triangle shape.

Note that each ψ2k(x) = −ψ2k(L − x) is antisymmetric about the midpoint x = 1
2L, for

all k. Since our initial conditions are that y(x, 0) is symmetric about x = 1
2L, none of the

even order eigenfunctions can enter into the expansion, precisely as we have found. The
d’Alembert solution to this problem is particularly simple and is shown in Fig. 14.7. Note
that g(x) = 1

2y(x, 0) must be extended to the entire real line. We know that g(x) = g(x+2L)
is periodic with spatial period 2L, but how to we extend g(x) from the interval

[
0, L

]
to

the interval
[
−L, 0

]
? To do this, we use y(x, 0) = g(x)− g(−x), which says that g(x) must

be antisymmetric, i.e. g(x) = −g(−x). Equivalently, ẏ(x, 0) = cg′(x) − cg′(−x) = 0, which
integrates to g(x) = −g(−x).

14.4 Sturm-Liouville Theory

Consider the Lagrangian density

L = 1
2 µ(x) ẏ2 − 1

2 τ(x) y
′2 − 1

2 v(x) y
2 . (14.88)

The last term is new and has the physical interpretation of a harmonic potential which
attracts the string to the line y = 0. The Euler-Lagrange equations are then

− ∂

∂x

[
τ(x)

∂y

∂x

]
+ v(x) y = −µ(x)

∂2y

∂t2
. (14.89)

This equation is invariant under time translation. Thus, if y(x, t) is a solution, then so is

y(x, t + t0), for any t0. This means that the solutions can be chosen to be eigenstates of

the operator ∂t, which is to say y(x, t) = ψ(x) e−iωt. Because the coefficients are real, both
y and y∗ are solutions, and taking linear combinations we have

y(x, t) = ψ(x) cos(ωt+ φ) . (14.90)

Plugging this into eqn. 14.89, we obtain

− d

dx

[
τ(x)ψ′(x)

]
+ v(x)ψ(x) = ω2 µ(x)ψ(x) . (14.91)



14 CHAPTER 14. CONTINUUM MECHANICS

This is the Sturm-Liouville equation. There are four types of boundary conditions that we
shall consider:

1. Fixed endpoint: ψ(x) = 0, where x = xa,b.

2. Natural: τ(x)ψ′(x) = 0, where x = xa,b.

3. Periodic: ψ(x) = ψ(x+ L), where L = xb − xa.

4. Mixed homogeneous: αψ(x) + β ψ′(x) = 0, where x = xa,b.

The Sturm-Liouville equation is an eigenvalue equation. The eigenfunctions {ψn(x)} satisfy

− d

dx

[
τ(x)ψ′

n(x)
]

+ v(x)ψn(x) = ω2
n µ(x)ψn(x) . (14.92)

Now suppose we a second solution ψm(x), satisfying

− d

dx

[
τ(x)ψ′

m(x)
]

+ v(x)ψm(x) = ω2
m µ(x)ψm(x) . (14.93)

Now multiply (14.92)∗ by ψm(x) and (14.93) by ψ∗
n(x) and subtract, yielding

ψ∗
n
d

dx

[
τ ψ′

m

]
− ψm

d

dx

[
τ ψ′∗

n

]
=
(
ω∗

n
2 − ω2

m

)
µψm ψ∗

n (14.94)

=
d

dx

[
τ ψ∗

n ψ
′
m − τ ψm ψ′∗

n

]
. (14.95)

We integrate this equation over the length of the string, to get

(
ω∗

n
2 − ω2

m

)
xb∫

xa

dxµ(x)ψ∗
n(x)ψm(x) =

[
τ(x)ψ∗

n(x)ψ′
m(x) − τ(x)ψm(x)ψ′∗

n(x)
]x=xb

x=xa

= 0 . (14.96)

The RHS vanishes for any of the four types of boundary conditions articulated above.

Thus, we have (
ω∗

n
2 − ω2

m

) 〈
ψn

∣∣ψm

〉
= 0 , (14.97)

where the inner product is defined as

〈
ψ
∣∣φ
〉
≡

xb∫

xa

dxµ(x)ψ∗(x)φ(x) . (14.98)

Note that the distribution µ(x) is non-negative definite. Settingm = n, we have
〈
ψn

∣∣ψn

〉
≥

0, and hence ω∗
n
2 = ω2

n, which says that ω2
n ∈ R. When ω2

m 6= ω2
n, the eigenfunctions are

orthogonal with respect to the above inner product. In the case of degeneracies, we may
invoke the Gram-Schmidt procedure, which orthogonalizes the eigenfunctions within a given
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degenerate subspace. Since the Sturm-Liouville equation is linear, we may normalize the
eigenfunctions, taking 〈

ψm

∣∣ψn

〉
= δmn. (14.99)

Finally, since the coefficients in the Sturm-Liouville equation are all real, we can and hence-
forth do choose the eigenfunctions themselves to be real.

Another important result, which we will not prove here, is the completeness of the eigen-
function basis. Completeness means

µ(x)
∑

n

ψ∗
n(x)ψn(x′) = δ(x− x′) . (14.100)

Thus, any function can be expanded in the eigenbasis, viz.

φ(x) =
∑

n

Cn ψn(x) , Cn =
〈
ψn

∣∣φ
〉
. (14.101)

14.4.1 Variational method

Consider the functional

ω2
[
ψ(x)

]
=

1
2

xb∫
xa

dx
{
τ(x)ψ′2(x) + v(x)ψ2(x)

}

1
2

xb∫
xa

dxµ(x)ψ2(x)

≡ N
D . (14.102)

The variation is

δω2 =
δN
D − N δD

D2

=
δN − ω2 δD

D . (14.103)

Thus,

δω2 = 0 =⇒ δN = ω2 δD , (14.104)

which says

− d

dx

[
τ(x)

dψ(x)

dx

]
+ v(x)ψ(x) = ω2 µ(x)ψ(x) , (14.105)

which is the Sturm-Lioiuville equation. In obtaining this equation, we have dropped a
boundary term, which is correct provided

[
τ(x)ψ′(x)ψ(x)

]x=x
b

x=xa

= 0 . (14.106)

This condition is satisfied for any of the first three classes of boundary conditions: ψ = 0
(fixed endpoint), τ ψ′ = 0 (natural), or ψ(xa) = ψ(xb), ψ

′(xa) = ψ′(xb) (periodic). For
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the fourth class of boundary conditions, αψ + βψ′ = 0 (mixed homogeneous), the Sturm-
Liouville equation may still be derived, provided one uses a slightly different functional,

ω2
[
ψ(x)

]
=

Ñ
D with Ñ = N +

α

2β

[
τ
(
xb

)
ψ2
(
xb

)
− τ
(
xa

)
ψ2
(
xa

)]
, (14.107)

since then

δÑ − Ñ δD =

xb∫

xa

dx

{
− d

dx

[
τ(x)

dψ(x)

dx

]
+ v(x)ψ(x) − ω2µ(x)ψ(x)

}
δψ(x)

+

[
τ(x)

(
ψ′(x) +

α

β
ψ(x)

)
δψ(x)

]x=x
b

x=xa

, (14.108)

and the last term vanishes as a result of the boundary conditions.

For all four classes of boundary conditions we may write

ω2
[
ψ(x)

]
=

xb∫
xa

dxψ(x)

K︷ ︸︸ ︷[
− d

dx
τ(x)

d

dx
+ v(x)

]
ψ(x)

xb∫
xa

dxµ(x)ψ2(x)

(14.109)

If we expand ψ(x) in the basis of eigenfunctions of the Sturm-Liouville operator K,

ψ(x) =

∞∑

n=1

Cn ψn(x) , (14.110)

we obtain

ω2
[
ψ(x)

]
= ω2(C1, . . . , C∞) =

∑
∞

j=1 |Cj|2 ω2
j∑

∞

k=1 |Ck|2
. (14.111)

If ω2
1 ≤ ω2

2 ≤ . . ., then we see that ω2 ≥ ω2
1, so an arbitrary function ψ(x) will always yield

an upper bound to the lowest eigenvalue.

As an example, consider a violin string (v = 0) with a mass m affixed in the center. We
write µ(x) = µ+mδ(x− 1

2L), hence

ω2
[
ψ(x)

]
=

τ
L∫
0

dxψ′2(x)

mψ2(1
2L) + µ

L∫
0

dxψ2(x)

(14.112)

Now consider a trial function

ψ(x) =





Axα if 0 ≤ x ≤ 1
2L

A (L− x)α if 1
2L ≤ x ≤ L .

(14.113)
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Figure 14.8: One-parameter variational solution for a string with a mass m affixed at
x = 1

2L.

The functional ω2
[
ψ(x)

]
now becomes an ordinary function of the trial parameter α, with

ω2(α) =
2τ
∫ L/2
0 dxα2 x2α−2

m
(

1
2L
)2α

+ 2µ
L/2∫
0

dxx2α

=

(
2c

L

)2
· α2(2α+ 1)

(2α− 1)
[
1 + (2α + 1) m

M

] , (14.114)

where M = µL is the mass of the string alone. We minimize ω2(α) to obtain the optimal
solution of this form:

d

dα
ω2(α) = 0 =⇒ 4α2 − 2α− 1 + (2α + 1)2 (α− 1)

m

M
= 0 . (14.115)

For m/M → 0, we obtain α = 1
4

(
1 +

√
5
)
≈ 0.809. The variational estimate for the

eigenvalue is then 6.00% larger than the exact answer ω0
1 = πc/L. In the opposite limit,

m/M → ∞, the inertia of the string may be neglected. The normal mode is then piecewise
linear, in the shape of an isosceles triangle with base L and height y. The equation of
motion is then mÿ = −2τ · (y/1

2L), assuming |y/L| ≪ 1. Thus, ω1 = (2c/L)
√
M/m. This

is reproduced exactly by the variational solution, for which α→ 1 as m/M → ∞.
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14.5 Continua in Higher Dimensions

In higher dimensions, we generalize the operator K as follows:

K = − ∂

∂xα
ταβ(x)

∂

∂xβ
+ v(x) . (14.116)

The eigenvalue equation is again

Kψ(x) = ω2 µ(x)ψ(x) , (14.117)

and the Green’s function again satisfies
[
K − ω2 µ(x)

]
Gω(x,x′) = δ(x − x′) , (14.118)

and has the eigenfunction expansion,

Gω(x,x′) =

∞∑

n=1

ψn(x)ψn(x′)

ω2
n − ω2

. (14.119)

The eigenfunctions form a complete and orthonormal basis:

µ(x)

∞∑

n=1

ψn(x)ψn(x′) = δ(x − x′) (14.120)

∫

Ω

dxµ(x)ψm(x)ψn(x) = δmn , (14.121)

where Ω is the region of space in which the continuous medium exists. For purposes of
simplicity, we consider here fixed boundary conditions u(x, t)

∣∣
∂Ω

= 0, where ∂Ω is the
boundary of Ω. The general solution to the wave equation

[
µ(x)

∂2

∂t2
− ∂

∂xα
ταβ(x)

∂

∂xβ
+ v(x)

]
u(x, t) = 0 (14.122)

is

u(x, t) =

∞∑

n=1

Cn ψn(x) cos(ωn t+ δn) . (14.123)

The variational approach generalizes as well. We define

N
[
ψ(x)

]
=

∫

Ω

dx

[
ταβ

∂ψ

∂xα

∂ψ

∂xβ
+ v ψ2

]
(14.124)

D
[
ψ(x)

]
=

∫

Ω

dx µψ2 , (14.125)

and

ω2
[
ψ(x)

]
=

N
[
ψ(x)

]

D
[
ψ(x)

] . (14.126)

Setting the variation δω2 = 0 recovers the eigenvalue equation Kψ = ω2µψ.
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14.5.1 Membranes

Consider a surface where the height z is a function of the lateral coordinates x and y:

z = u(x, y) . (14.127)

The equation of the surface is then

F (x, y, z) = z − u(x, y) = 0 . (14.128)

Let the differential element of surface area be dS. The projection of this element onto the
(x, y) plane is

dA = dx dy

= n̂ · ẑ dS . (14.129)

The unit normal n̂ is given by

n̂ =
∇F∣∣∇F

∣∣ =
ẑ − ∇u√
1 + (∇u)2

. (14.130)

Thus,

dS =
dx dy

n̂ · ẑ =
√

1 + (∇u)2 dx dy . (14.131)

The potential energy for a deformed surface can take many forms. In the case we shall
consider here, we consider only the effect of surface tension σ, and we write the potential
energy functional as

U
[
u(x, y, t)

]
= σ

∫
dS

= U0 + 1
2

∫
dA (∇u)2 + . . . . (14.132)

The kinetic energy functional is

T
[
u(x, y, t)

]
= 1

2

∫
dAµ(x) (∂tu)

2 . (14.133)

Thus, the action is

S
[
u(x, t)

]
=

∫
d2xL(u,∇u, ∂tu,x) , (14.134)

where the Lagrangian density is

L = 1
2µ(x) (∂tu)

2 − 1
2σ(x) (∇u)2 , (14.135)

where here we have allowed both µ(x) and σ(x) to depend on the spatial coordinates. The
equations of motion are

0 =
∂

∂t

∂L
∂ ∂tu

+ ∇ · ∂L
∂∇u

− ∂L
∂u

(14.136)

= µ(x)
∂2u

∂t2
− ∇ ·

{
σ(x)∇u

}
. (14.137)
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14.5.2 Helmholtz equation

When µ and σ are each constant, we obtain the Helmholtz equation:

(
∇2 − 1

c2
∂2

∂t2

)
u(x, t) = 0 , (14.138)

with c =
√
σ/µ. The d’Alembert solution still works – waves of arbitrary shape can

propagate in a fixed direction k̂:

u(x, t) = f(k̂ · x − ct) . (14.139)

This is called a plane wave because the three dimensional generalization of this wave has
wavefronts which are planes. In our case, it might better be called a line wave, but people
will look at you funny if you say that, so we’ll stick with plane wave. Note that the locus
of points of constant f satisfies

φ(x, t) = k̂ · x − ct = constant , (14.140)

and setting dφ = 0 gives

k̂ · dx
dt

= c , (14.141)

which means that the velocity along k̂ is c. The component of x perpendicular to k̂ is
arbitrary, hence the regions of constant φ correspond to lines which are orthogonal to k̂.

Owing to the linearity of the wave equation, we can construct arbitrary superpositions of
plane waves. The most general solution is written

u(x, t) =

∫
d2k

(2π)2

[
A(k) ei(k·x−ckt) +B(k) ei(k·x+ckt)

]
. (14.142)

The first term in the bracket on the RHS corresponds to a plane wave moving in the +k̂

direction, and the second term to a plane wave moving in the −k̂ direction.

14.5.3 Rectangles

Consider a rectangular membrane where x ∈ [0, a] and y ∈ [0, b], and subject to the bound-
ary conditions u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0. We try a solution of the form

u(x, y, t) = X(x)Y (y)T (t) . (14.143)

This technique is known as separation of variables. Dividing the Helmholtz equation by u
then gives

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
=

1

c2
1

T

∂2T

∂t2
. (14.144)
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The first term on the LHS depends only on x. The second term on the LHS depends only
on y. The RHS depends only on t. Therefore, each of these terms must individually be
constant. We write

1

X

∂2X

∂x2
= −k2

x ,
1

Y

∂2Y

∂y2
= −k2

y ,
1

T

∂2T

∂t2
= −ω2 , (14.145)

with

k2
x + k2

y =
ω2

c2
. (14.146)

Thus, ω = ±c|k|. The most general solution is then

X(x) = A cos(kxx) +B sin(kxx) (14.147)

Y (y) = C cos(kyy) +D sin(kyy) (14.148)

T (t) = E cos(ωt) +B sin(ωt) . (14.149)

The boundary conditions now demand

A = 0 , C = 0 , sin(kxa) = 0 , sin(kyb) = 0 . (14.150)

Thus, the most general solution subject to the boundary conditions is

u(x, y, t) =

∞∑

m=1

∞∑

n=1

Amn sin

(
mπx

a

)
sin

(
nπy

b

)
cos
(
ωmnt+ δmn

)
, (14.151)

where

ωmn =

√(
mπc

a

)2
+

(
nπc

b

)2
. (14.152)

14.5.4 Circles

For a circular membrane, such as a drumhead, it is convenient to work in two-dimensional
polar coordinates (r, ϕ). The Laplacian is then

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂ϕ2
. (14.153)

We seek a solution to the Helmholtz equation which satisfies the boundary conditions u(r =
a, ϕ, t) = 0. Once again, we invoke the separation of variables method, writing

u(r, ϕ, t) = R(r)Φ(ϕ)T (t) , (14.154)

resulting in
1

R

1

r

∂

∂r

(
r
∂R

∂r

)
+

1

r2
1

Φ

∂2Φ

∂ϕ2
=

1

c2
1

T

∂2T

∂t2
. (14.155)

The azimuthal and temporal functions are

Φ(ϕ) = eimϕ , T (t) = cos(ωt+ δ) , (14.156)
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where m is an integer in order that the function u(r, ϕ, t) be single-valued. The radial
equation is then

∂2R

∂r2
+

1

r

∂R

∂r
+

(
ω2

c2
− m2

r2

)
R = 0 . (14.157)

This is Bessel’s equation, with solution

R(r) = AJm

(ωr
c

)
+BNm

(ωr
c

)
, (14.158)

where Jm(z) and Nm(z) are the Bessel and Neumann functions of order m, respectively.
Since the Neumann functions diverge at r = 0, we must exclude them, setting B = 0 for
each m.

We now invoke the boundary condition u(r = a, ϕ, t) = 0. This requires

Jm

(ωa
c

)
= 0 =⇒ ω = ωmℓ = xmℓ

c

a
, (14.159)

where Jm(xmℓ) = 0, i.e. xmℓ is the ℓth zero of Jm(x). The mose general solution is therefore

u(r, ϕ, t) =

∞∑

m=0

∞∑

ℓ=1

Amℓ Jm

(
xmℓ r/a

)
cos
(
mϕ+ βmℓ

)
cos(ωmℓ t+ δmℓ

)
. (14.160)

14.5.5 Sound in fluids

Let ̺(x, t) and v(x, t) be the density and velocity fields in a fluid. Mass conservation
requires

∂̺

∂t
+ ∇ · (̺v) = 0 . (14.161)

This is the continuity equation for mass.

Focus now on a small packet of fluid of infinitesimal volume dV . The total force on this
fluid element is dF =

(
−∇p+ ̺ g

)
dV . By Newton’s Second Law,

dF =
(
̺ dV

) dv
dt

(14.162)

Note that the chain rule gives

dv

dt
=
∂v

∂t
+
(
v · ∇

)
v . (14.163)

Thus, dividing eqn, 14.162 by dV , we obtain

̺

(
∂v

∂t
+
(
v · ∇

)
v

)
= −∇p+ ̺ g . (14.164)

This is the inviscid (i.e. zero viscosity) form of the Navier-Stokes equation.
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Locally the fluid can also be described in terms of thermodynamic variables p(x, t) (pressure)
and T (x, t) (temperature). For a one-component fluid there is necessarily an equation of
state of the form p = p(̺, T ). Thus, we may write

dp =
∂p

∂̺

∣∣∣∣
T

d̺+
∂p

∂T

∣∣∣∣
̺

dT . (14.165)

We now make the following approximations. First, we assume that the fluid is close to
equilibrium at v = 0, meaning we write p = p̄+ δp and ̺ = ¯̺+ δ̺, and assume that δp, δ̺,
and v are small. The smallness of v means we can neglect the nonlinear term (v · ∇)v in
eqn. 14.164. Second, we neglect gravity (more on this later). The continuity equation then
takes the form

∂ δ̺

∂t
+ ¯̺∇ · v = 0 , (14.166)

and the Navier-Stokes equation becomes

¯̺
∂v

∂t
= −∇δp . (14.167)

Taking the time derivative of the former, and then invoking the latter of these equations
yields

∂2 δ̺

∂t2
= ∇2p =

(
∂p

∂̺

)
∇2 δ̺ ≡ c2 ∇2δ̺ . (14.168)

The speed of wave propagation, i.e. the speed of sound, is given by

c =

√
∂p

∂̺
. (14.169)

Finally, we must make an assumption regarding the conditions under which the derivative
∂p/∂̺ is computed. If the fluid is an excellent conductor of heat, then the temperature will
equilibrate quickly and it is a good approximation to take the derivative at fixed temper-
ature. The resulting value of c is called the isothermal sound speed cT . If, on the other
hand, the fluid is a poor conductor of heat, as is the case for air, then it is more appropriate
to take the derivative at constant entropy, yielding the adiabatic sound speed. Thus,

cT =

√(
∂p

∂̺

)

T

, cS =

√(
∂p

∂̺

)

S

. (14.170)

In an ideal gas, cS/cT =
√
γ, where γ = cp/cV is the ratio of the specific heat at constant

pressure to that at constant volume. For a (mostly) diatomic gas like air (comprised of N2

and O2 and just a little Ar), γ = 7
5 . Note that one can write c2 = 1/̺κ, where

κ =
1

̺

(
∂̺

∂p

)
(14.171)

is the compressibility , which is the inverse of the bulk modulus. Again, one must specify
whether one is talking about κT or κS . For reference in air at T = 293K, using M =
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28.8 g/mol, one obtains cT = 290.8m/s and cS = 344.0m/s. In H2O at 293K, c = 1482m/s.
In Al at 273K, c = 6420m/s.

If we retain gravity, the wave equation becomes

∂2δ̺

∂t2
= c2 ∇2δ̺− g · ∇δ̺ . (14.172)

The dispersion relation is then

ω(k) =
√
c2k2 + ig · k . (14.173)

We are permitted to ignore the effects of gravity so long as c2k2 ≫ gk. In terms of the
wavelength λ = 2π/k, this requires

λ≪ 2πc2

g
= 75.9 km (at T = 293K) . (14.174)

14.6 Dispersion

The one-dimensional Helmholtz equation ∂2
x y = c−2 ∂2

t y is solved by a plane wave

y(x, t) = Aeikx e−iωt , (14.175)

provided ω = ±ck. We say that there are two branches to the dispersion relation ω(k)
for this equation. In general, we may add solutions, due to the linearity of the Helmholtz
equation. The most general solution is then

y(x, t) =

∞∫

−∞

dk

2π

[
f̂(k) eik(x−ct) + ĝ(k) eik(x+ct)

]

= f(x− ct) + g(x+ ct) , (14.176)

which is consistent with d’Alembert’s solution.

Consider now the free particle Schrödinger equation in one space dimension,

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
. (14.177)

The function ψ(x, t) is the quantum mechanical wavefunction for a particle of mass m
moving freely along a one-dimensional line. The probability density for finding the particle
at position x at time t is

ρ(x, t) =
∣∣ψ(x, t)

∣∣2 . (14.178)

Conservation of probability therefore requires

∞∫

−∞

dx
∣∣ψ(x, t)

∣∣2 = 1 . (14.179)
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This condition must hold at all times t.

As is the case with the Helmholtz equation, the Schrödinger equation is solved by a plane
wave of the form

ψ(x, t) = Aeikx e−iωt , (14.180)

where the dispersion relation now only has one branch, and is given by

ω(k) =
~k2

2m
. (14.181)

The most general solution is then

ψ(x, t) =

∞∫

−∞

dk

2π
ψ̂(k) eikx e−i~k2t/2m . (14.182)

Let’s suppose we start at time t = 0 with a Gaussian wavepacket,

ψ(x, 0) =
(
πℓ20
)−1/4

e−x2/2ℓ20 eik0x . (14.183)

To find the amplitude ψ̂(k), we perform the Fourier transform:

ψ̂(k) =

∞∫

−∞

dxψ(x, 0) e−ikx

=
√

2
(
πℓ20
)−1/4

e−(k−k0)
2ℓ20/2 . (14.184)

We now compute ψ(x, t) valid for all times t:

ψ(x, t) =
√

2
(
πℓ20
)−1/4

∞∫

−∞

dk

2π
eikx e−(k−k0)

2ℓ20/2 eikx e−i~k2t/2m (14.185)

=
(
πℓ20
)−1/4 (

1 + it/τ
)−1/2

exp

[
−
(
x− ~k0t/m

)2

2 ℓ20
(
1 + t2/τ2

)
]

× exp

[
i
(
2k0 ℓ

2
0 x+ x2 t/τ − k2

0 ℓ
4
0 t/τ

)

2 ℓ20
(
1 + t2/τ2

)
]
, (14.186)

where τ ≡ mℓ20/~. The probability density is then the normalized Gaussian

ρ(x, t) =
1√
π ℓ2(t)

e−(x−v0t)2/ℓ2(t) , (14.187)

where v0 = ~k0/m and

ℓ(t) = ℓ0
√

1 + t2/τ2 . (14.188)

Note that ℓ(t) gives the width of the wavepacket, and that this width increases as a function

of time, with ℓ(t≫ τ) ≃ ℓ0 t/τ .
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Figure 14.9: Wavepacket spreading for k0 ℓ0 = 2 with t/τ = 0, 2, 4, 6, and 8.

Unlike the case of the Helmholtz equation, the solution to the Schrödinger equation does not
retain its shape as it moves. This phenomenon is known as the spreading of the wavepacket .
In fig. 14.9, we show the motion and spreading of the wavepacket.

For a given plane wave eikx e−iω(k)t, the wavefronts move at the phase velocity

vp(k) =
ω(k)

k
. (14.189)

The center of the wavepacket, however, travels at the group velocity

vg(k) =
dω

dk

∣∣∣∣
k0

, (14.190)

where k = k0 is the maximum of
∣∣ψ̂(k)

∣∣2.

14.7 Appendix I : Three Strings

Problem: Three identical strings are connected to a ring of mass m as shown in fig. 14.10.
The linear mass density of each string is σ and each string is under identical tension τ . In
equilibrium, all strings are coplanar. All motion on the string is in the ẑ-direction, which is
perpendicular to the equilibrium plane. The ring slides frictionlessly along a vertical pole.

It is convenient to describe each string as a half line [−∞, 0]. We can choose coordinates

x1, x2, and x3 for the three strings, respectively. For each string, the ring lies at xi = 0.
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A pulse is sent down the first string. After a time, the pulse arrives at the ring. Transmitted
waves are sent down the other two strings, and a reflected wave down the first string. The
solution to the wave equation in the strings can be written as follows. In string #1, we have

z = f(ct− x1) + g(ct + x1) . (14.191)

In the other two strings, we may write z = hA(ct+ x2) and z = hB(ct+ x3), as indicated in
the figure.

Figure 14.10: Three identical strings arranged symmetrically in a plane, attached to a
common end. All motion is in the direction perpendicular to this plane. The red ring,
whose mass is m, slides frictionlessly in this direction along a pole.

(a) Write the wave equation in string #1. Define all constants.

(b) Write the equation of motion for the ring.

(c) Solve for the reflected wave g(ξ) in terms of the incident wave f(ξ). You may write this
relation in terms of the Fourier transforms f̂(k) and ĝ(k).

(d) Suppose a very long wavelength pulse of maximum amplitude A is incident on the ring.
What is the maximum amplitude of the reflected pulse? What do we mean by “very long
wavelength”?

Solution:



28 CHAPTER 14. CONTINUUM MECHANICS

(a) The wave equation is
∂2z

∂x2
=

1

c2
∂2z

∂t2
, (14.192)

where x is the coordinate along the string, and c =
√
τ/σ is the speed of wave propagation.

(b) Let Z be the vertical coordinate of the ring. Newton’s second law says mZ̈ = F , where
the force on the ring is the sum of the vertical components of the tension in the three strings
at x = 0:

F = −τ
[
− f ′(ct) + g′(ct) + h′A(ct) + h′B(ct)

]
, (14.193)

where prime denotes differentiation with respect to argument.

(c) To solve for the reflected wave, we must eliminate the unknown functions hA,B and
then obtain g in terms of f . This is much easier than it might at first seem. We start by
demanding continuity at the ring. This means

Z(t) = f(ct) + g(ct) = hA(ct) = hB(ct) (14.194)

for all t. We can immediately eliminate hA,B:

hA(ξ) = hB(ξ) = f(ξ) + g(ξ) , (14.195)

for all ξ. Newton’s second law from part (b) may now be written as

mc2
[
f ′′(ξ) + g′′(ξ)

]
= −τ

[
f ′(ξ) + 3g′(ξ)

]
. (14.196)

This linear ODE becomes a simple linear algebraic equation for the Fourier transforms,

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ , (14.197)

etc. We readily obtain

ĝ(k) = −
(
k − iQ

k − 3iQ

)
f̂(k) , (14.198)

where Q ≡ τ/mc2 has dimensions of inverse length. Since hA,B = f + g, we have

ĥA(k) = ĥB(k) = −
(

2iQ

k − 3iQ

)
f̂(k) . (14.199)

(d) For a very long wavelength pulse, composed of plane waves for which |k| ≪ Q, we
have ĝ(k) ≈ −1

3 f̂(k). Thus, the reflected pulse is inverted, and is reduced by a factor 1
3 in

amplitude. Note that for a very short wavelength pulse, for which k ≫ Q, we have perfect
reflection with inversion, and no transmission. This is due to the inertia of the ring.

It is straightforward to generalize this problem to one with n strings. The transmission
into each of the (n − 1) channels is of course identical (by symmetry). One then finds the
reflection and transmission amplitudes

r(k) = −
(
k − i(n− 2)Q

k − inQ

)
, t(k) = −

(
2iQ

k − inQ

)
. (14.200)
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Conservation of energy means that the sum of the squares of the reflection amplitude and
all the (n− 1) transmission amplitudes must be unity:

∣∣r(k)
∣∣2 + (n− 1)

∣∣t(k)
∣∣2 = 1 . (14.201)

14.8 Appendix II : General Field Theoretic Formulation

Continuous systems possess an infinite number of degrees of freedom. They are described
by a set of fields φa(x, t) which depend on space and time. These fields may represent
local displacement, pressure, velocity, etc. The equations of motion of the fields are again
determined by extremizing the action, which, in turn, is an integral of the Lagrangian

density over all space and time. Extremization yields a set of (generally coupled) partial

differential equations.

14.8.1 Euler-Lagrange equations for classical field theories

Suppose φa(x) depends on n independent variables, {x1, x2, . . . , xn}. Consider the func-
tional

S
[
{φa(x)

]
=

∫

Ω

dxL(φa ∂µφa,x) , (14.202)

i.e. the Lagrangian density L is a function of the fields φa and their partial derivatives
∂φa/∂xµ. Here Ω is a region in Rn. Then the first variation of S is

δS =

∫

Ω

dx

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)

∂ δφa

∂xµ

}

=

∮

∂Ω

dΣ nµ ∂L
∂(∂µφa)

δφa +

∫

Ω

dx

{
∂L
∂φa

− ∂

∂xµ

(
∂L

∂(∂µφa)

)}
δφa , (14.203)

where ∂Ω is the (n− 1)-dimensional boundary of Ω, dΣ is the differential surface area, and

nµ is the unit normal. If we demand ∂L/∂(∂µφa)
∣∣
∂Ω

= 0 of δφa

∣∣
∂Ω

= 0, the surface term
vanishes, and we conclude

δS

δφa(x)
=

[
∂L
∂φa

− ∂

∂xµ

(
∂L

∂(∂µφa)

)]

x

, (14.204)

where the subscript means we are to evaluate the term in brackets at x. In a mechanical
system, one of the n independent variables (usually x0), is the time t. However, we may
be interested in a time-independent context in which we wish to extremize the energy
functional, for example. In any case, setting the first variation of S to zero yields the
Euler-Lagrange equations,

δS = 0 ⇒ ∂L
∂φa

− ∂

∂xµ

(
∂L

∂(∂µφa)

)
= 0 (14.205)
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The Lagrangian density for an electromagnetic field with sources is

L = − 1
16π Fµν F

µν − JµA
µ . (14.206)

The equations of motion are then

∂L
∂Aν

− ∂

∂xν

(
∂L

∂(∂µAν)

)
= 0 ⇒ ∂µ F

µν = 4πJν , (14.207)

which are Maxwell’s equations.

14.8.2 Conserved currents in field theory

Recall the result of Noether’s theorem for mechanical systems:

d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)

ζ=0

= 0 , (14.208)

where q̃σ = q̃σ(q, ζ) is a one-parameter (ζ) family of transformations of the generalized
coordinates which leaves L invariant. We generalize to field theory by replacing

qσ(t) −→ φa(x, t) , (14.209)

where {φa(x, t)} are a set of fields, which are functions of the independent variables {x, y, z, t}.
We will adopt covariant relativistic notation and write for four-vector xµ = (ct, x, y, z). The
generalization of dQ/dt = 0 is

∂

∂xµ

(
∂L

∂ (∂µφa)

∂φ̃a

∂ζ

)

ζ=0

= 0 , (14.210)

where there is an implied sum on both µ and a. We can write this as ∂µ J
µ = 0, where

Jµ ≡ ∂L
∂ (∂µφa)

∂φ̃a

∂ζ

∣∣∣∣∣
ζ=0

. (14.211)

We call Q = J0/c the total charge. If we assume J = 0 at the spatial boundaries of our
system, then integrating the conservation law ∂µ J

µ over the spatial region Ω gives

dQ

dt
=

∫

Ω

d3x ∂0 J
0 = −

∫

Ω

d3x∇ · J = −
∮

∂Ω

dΣ n̂ · J = 0 , (14.212)

assuming J = 0 at the boundary ∂Ω.

As an example, consider the case of a complex scalar field, with Lagrangian density2

L(ψ, , ψ∗, ∂µψ, ∂µψ
∗) = 1

2K (∂µψ
∗)(∂µψ) − U

(
ψ∗ψ

)
. (14.213)

2We raise and lower indices using the Minkowski metric gµν = diag (+,−,−,−).
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This is invariant under the transformation ψ → eiζ ψ, ψ∗ → e−iζ ψ∗. Thus,

∂ψ̃

∂ζ
= i eiζ ψ ,

∂ψ̃∗

∂ζ
= −i e−iζ ψ∗ , (14.214)

and, summing over both ψ and ψ∗ fields, we have

Jµ =
∂L

∂ (∂µψ)
· (iψ) +

∂L
∂ (∂µψ∗)

· (−iψ∗)

=
K

2i

(
ψ∗∂µψ − ψ ∂µψ∗

)
. (14.215)

The potential, which depends on |ψ|2, is independent of ζ. Hence, this form of conserved
4-current is valid for an entire class of potentials.

14.8.3 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

L = i~ψ∗ ∂ψ

∂t
− ~

2

2m
∇ψ∗ · ∇ψ − g

(
|ψ|2 − n0

)2
. (14.216)

This describes a Bose fluid with repulsive short-ranged interactions. Here ψ(x, t) is again
a complex scalar field, and ψ∗ is its complex conjugate. Using the Leibniz rule, we have

δS[ψ∗, ψ] = S[ψ∗ + δψ∗, ψ + δψ]

=

∫
dt

∫
ddx

{
i~ψ∗ ∂δψ

∂t
+ i~ δψ∗ ∂ψ

∂t
− ~2

2m
∇ψ∗ · ∇δψ − ~2

2m
∇δψ∗ · ∇ψ

− 2g
(
|ψ|2 − n0

)
(ψ∗δψ + ψδψ∗)

}

=

∫
dt

∫
ddx

{[
− i~

∂ψ∗

∂t
+

~
2

2m
∇2ψ∗ − 2g

(
|ψ|2 − n0

)
ψ∗

]
δψ

+

[
i~
∂ψ

∂t
+

~2

2m
∇2ψ − 2g

(
|ψ|2 − n0

)
ψ

]
δψ∗

}
, (14.217)

where we have integrated by parts where necessary and discarded the boundary terms.
Extremizing S[ψ∗, ψ] therefore results in the nonlinear Schrödinger equation (NLSE),

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + 2g

(
|ψ|2 − n0

)
ψ (14.218)

as well as its complex conjugate,

−i~ ∂ψ
∗

∂t
= − ~

2

2m
∇2ψ∗ + 2g

(
|ψ|2 − n0

)
ψ∗ . (14.219)
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Note that these equations are indeed the Euler-Lagrange equations:

δS

δψ
=
∂L
∂ψ

− ∂

∂xµ

(
∂L
∂ ∂µψ

)
(14.220)

δS

δψ∗
=

∂L
∂ψ∗

− ∂

∂xµ

(
∂L

∂ ∂µψ∗

)
, (14.221)

with xµ = (t,x)3 Plugging in

∂L
∂ψ

= −2g
(
|ψ|2 − n0

)
ψ∗ ,

∂L
∂ ∂tψ

= i~ψ∗ ,
∂L
∂∇ψ

= − ~
2

2m
∇ψ∗ (14.222)

and

∂L
∂ψ∗

= i~ψ − 2g
(
|ψ|2 − n0

)
ψ ,

∂L
∂ ∂tψ∗

= 0 ,
∂L

∂∇ψ∗
= − ~

2

2m
∇ψ , (14.223)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

ψ(x, t) → ψ̃(x, t) = eiζ ψ(x, t) , ψ∗(x, t) → ψ̃∗(x, t) = e−iζ ψ∗(x, t) . (14.224)

Thus, the conserved Noether current is then

Jµ =
∂L
∂ ∂µψ

∂ψ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ ∂µψ∗

∂ψ̃∗

∂ζ

∣∣∣∣∣
ζ=0

J0 = −~ |ψ|2 (14.225)

J = − ~
2

2im

(
ψ∗

∇ψ − ψ∇ψ∗
)
. (14.226)

Dividing out by ~, taking J0 ≡ −~ρ and J ≡ −~j, we obtain the continuity equation,

∂ρ

∂t
+ ∇ · j = 0 , (14.227)

where

ρ = |ψ|2 , j =
~

2im

(
ψ∗

∇ψ − ψ∇ψ∗
)
. (14.228)

are the particle density and the particle current, respectively.

3In the nonrelativistic case, there is no utility in defining x0 = ct, so we simply define x0 = t.
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14.9 Appendix III : Green’s Functions

Suppose we add a forcing term,

µ(x)
∂2y

∂t2
− ∂

∂x

[
τ(x)

∂y

∂x

]
+ v(x) y = Re

[
µ(x) f(x) e−iωt

]
. (14.229)

We write the solution as
y(x, t) = Re

[
y(x) e−iωt

]
, (14.230)

where

− d

dx

[
τ(x)

dy(x)

dx

]
+ v(x) y(x) − ω2 µ(x) y(x) = µ(x) f(x) , (14.231)

or [
K − ω2µ(x)

]
y(x) = µ(x) f(x) , (14.232)

where K is a differential operator,

K ≡ − d

dx
τ(x)

d

dx
+ v(x) . (14.233)

Note that the eigenfunctions of K are the {ψn(x)}:

K ψn(x) = ω2
n µ(x)ψn(x) . (14.234)

The formal solution to equation 14.232 is then

y(x) =
[
K − ω2µ

]−1

x,x′
µ(x′) f(x′) (14.235)

=

xb∫

xa

dx′ µ(x′)Gω(x, x′) f(x′). (14.236)

What do we mean by the term in brackets? If we define the Green’s function

Gω(x, x′) ≡
[
K − ω2µ

]−1

x,x′
, (14.237)

what this means is [
K − ω2µ(x)

]
Gω(x, x′) = δ(x− x′) . (14.238)

Note that the Green’s function may be expanded in terms of the (real) eigenfunctions, as

Gω(x, x′) =
∑

n

ψn(x)ψn(x′)

ω2
n − ω2

, (14.239)

which follows from completeness of the eigenfunctions:

µ(x)

∞∑

n=1

ψn(x)ψn(x′) = δ(x− x′) . (14.240)
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The expansion in eqn. 14.239 is formally exact, but difficult to implement, since it requires
summing over an infinite set of eigenfunctions. It is more practical to construct the Green’s
function from solutions to the homogeneous Sturm Liouville equation, as follows. When
x 6= x′, we have that (K −ω2µ)Gω(x, x′) = 0, which is a homogeneous ODE of degree two.
Consider first the interval x ∈ [xa, x

′]. A second order homogeneous ODE has two solutions,

and further invoking the boundary condition at x = xa, there is a unique solution, up to
a multiplicative constant. Call this solution y1(x). Next, consider the interval x ∈ [x′, xb].
Once again, there is a unique solution to the homogeneous Sturm-Liouville equation, up
to a multiplicative constant, which satisfies the boundary condition at x = xb. Call this

solution y2(x). We then can write

Gω(x, x′) =





A(x′) y1(x) if xa ≤ x < x′

B(x′) y2(x) if x′ < x ≤ xb .

(14.241)

Here, A(x′) and B(x′) are undetermined functions. We now invoke the inhomogeneous
Sturm-Liouville equation,

− d

dx

[
τ(x)

dGω(x, x′)

dx

]
+ v(x)Gω(x, x′) − ω2µ(x)Gω(x, x′) = δ(x − x′) . (14.242)

We integrate this from x = x′ − ǫ to x = x′ + ǫ, where ǫ is a positive infinitesimal. This
yields

τ(x′)
[
A(x′) y′1(x

′) −B(x′) y′2(x
′)
]

= 1 . (14.243)

Continuity of Gω(x, x′) itself demands

A(x′) y1(x
′) = B(x′) y2(x

′) . (14.244)

Solving these two equations for A(x′) and B(x′), we obtain

A(x′) = − y2(x
′)

τ(x′)Wy1,y2
(x′)

, B(x′) = − y1(x
′)

τ(x′)Wy1,y2
(x′)

, (14.245)

where Wy1,y2
(x) is the Wronskian

Wy1,y2
(x) = det



y1(x) y2(x)

y′1(x) y′2(x)




= y1(x) y
′
2(x) − y2(x) y

′
1(x) . (14.246)

Now it is easy to show that Wy1,y2
(x) τ(x) = W τ is a constant. This follows from the fact

that

0 = y2K y1 − y2K y1

=
d

dx

{
τ(x)

[
y1 y

′
2 − y2 y

′
1

]}
. (14.247)
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Thus, we have

Gω(x, x′) =





−y1(x) y2(x
′)/W if xa ≤ x < x′

−y1(x
′) y2(x)/W if x′ < x ≤ xb ,

(14.248)

or, in compact form,

Gω(x, x′) = −y1(x<) y2(x>)

W τ
, (14.249)

where x< = min(x, x′) and x> = max(x, x′).

As an example, consider a uniform string (i.e. µ and τ constant, v = 0) with fixed endpoints
at xa = 0 and xb = L. The normalized eigenfunctions are

ψn(x) =

√
2

µL
sin

(
nπx

L

)
, (14.250)

and the eigenvalues are ωn = nπc/L. The Green’s function is

Gω(x, x′) =
2

µL

∞∑

n=1

sin(nπx/L) sin(nπx′/L)

(nπc/L)2 − ω2
. (14.251)

Now construct the homogeneous solutions:

(K − ω2µ) y1 = 0 , y1(0) = 0 =⇒ y1(x) = sin

(
ωx

c

)
(14.252)

(K − ω2µ) y2 = 0 , y2(L) = 0 =⇒ y2(x) = sin

(
ω(L− x)

c

)
. (14.253)

The Wronskian is

W = y1 y
′
2 − y2 y

′
1 = −ω

c
sin

(
ωL

c

)
. (14.254)

Therefore, the Green’s function is

Gω(x, x′) =
sin
(
ωx</c

)
sin
(
ω(L− x>)/c

)

(ωτ/c) sin(ωL/c)
. (14.255)

14.9.1 Perturbation theory

Suppose we have solved for the Green’s function for the linear operator K0 and mass density
µ0(x). I.e. we have (

K0 − ω2µ0(x)
)
G0

ω(x, x′) = δ(x− x′) . (14.256)

We now imagine perturbing τ0 → τ0 +λτ1, v0 → v0 +λv2, µ0 → µ0 +λµ1. What is the new
Green’s function Gω(x, x′)? We must solve

(
L0 + λL1

)
Gω(x, x′) = δ(x− x′) , (14.257)
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Figure 14.11: Diagrammatic representation of the perturbation expansion in eqn. 14.260..

where

L0
ω ≡ K0 − ω2 µ0 (14.258)

L1
ω ≡ K1 − ω2 µ1 . (14.259)

Dropping the ω subscript for simplicity, the full Green’s function is then given by

Gω =
[
L0

ω + λL1
ω

]−1

=
[ (
G0

ω

)−1
+ λL1

ω

]−1

=
[
1 + λG0

ω L
1
ω

]−1
G0

ω

= G0
ω − λG0

ω L
1
ω G

0
ω + λ2G0

ω L
1
ω G

0
ω L

1
ω G

0
ω + . . . . (14.260)

The ‘matrix multiplication’ is of course a convolution, i.e.

Gω(x, x′) = G0
ω(x, x′) − λ

xb∫

xa

dx1G
0
ω(x, x1)L

1
ω

(
x1,

d
dx1

)
G0

ω(x1, x
′) + . . . . (14.261)

Each term in the perturbation expansion of eqn. 14.260 may be represented by a diagram,
as depicted in Fig. 14.11.

As an example, consider a string with xa = 0 and xb = L with a mass point m affixed at
the point x = d. Thus, µ1(x) = mδ(x − d), and L1

ω = −mω2 δ(x − d), with λ = 1. The
perturbation expansion gives

Gω(x, x′) = G0
ω(x, x′) +mω2G0

ω(x, d)G0
ω(d, x′) +m2ω4G0

ω(x, d)G0
ω(d, d)G0

ω(d, x′) + . . .

= G0
ω(x, x′) +

mω2G0
ω(x, d)G0

ω(d, x′)

1 −mω2G0
ω(d, d)

. (14.262)
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Note that the eigenfunction expansion,

Gω(x, x′) =
∑

n

ψn(x)ψn(x′)

ω2
n − ω2

, (14.263)

says that the exact eigenfrequencies are poles of Gω(x, x′), and furthermore the residue at
each pole is

Res
ω=ωn

Gω(x, x′) = − 1

2ωn
ψn(x)ψn(x′) . (14.264)

According to eqn. 14.262, the poles of Gω(x, x′) are located at solutions to4

mω2G0
ω(d, d) = 1 . (14.265)

For simplicity let us set d = 1
2L, so the mass point is in the middle of the string. Then

according to eqn. 14.255,

G0
ω

(
1
2L,

1
2L
)

=
sin2(ωL/2c)

(ωτ/c) sin(ωL/c)

=
c

2ωτ
tan

(
ωL

2c

)
. (14.266)

The eigenvalue equation is therefore

tan

(
ωL

2c

)
=

2τ

mωc
, (14.267)

which can be manipulated to yield

m

M
λ = ctn λ , (14.268)

where λ = ωL/2c and M = µL is the total mass of the string. When m = 0, the LHS
vanishes, and the roots lie at λ = (n + 1

2)π, which gives ω = ω2n+1. Why don’t we see the
poles at the even mode eigenfrequencies ω2n? The answer is that these poles are present
in the Green’s function. They do not cancel for d = 1

2L because the perturbation does
not couple to the even modes, which all have ψ2n(1

2L) = 0. The case of general d may be
instructive in this regard. One finds the eigenvalue equation

sin(2λ)

2λ sin
(
2ǫλ
)
sin
(
2(1 − ǫ)λ

) =
m

M
, (14.269)

where ǫ = d/L. Now setting m = 0 we recover 2λ = nπ, which says ω = ωn, and all the
modes are recovered.

4Note in particular that there is no longer any divergence at the location of the original poles of G0
ω(x, x′).

These poles are cancelled.
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14.9.2 Perturbation theory for eigenvalues and eigenfunctions

We wish to solve (
K0 + λK1

)
ψ = ω2

(
µ0 + λµ1

)
ψ , (14.270)

which is equivalent to
L0

ω ψ = −λL1
ω ψ . (14.271)

Multiplying by
(
L0

ω

)−1
= G0

ω on the left, we have

ψ(x) = −λ
xb∫

xa

dx′Gω(x, x′)L1
ω ψ(x′) (14.272)

= λ

∞∑

m=1

ψm(x)

ω2 − ω2
m

xb∫

xa

dx′ ψm(x′)L1
ω ψ(x′) . (14.273)

We are free to choose any normalization we like for ψ(x). We choose

〈
ψ
∣∣ψn

〉
=

xb∫

xa

dx µ0(x)ψn(x)ψ(x) = 1 , (14.274)

which entails

ω2 − ω2
n = λ

xb∫

xa

dxψn(x)L1
ω ψ(x) (14.275)

as well as

ψ(x) = ψn(x) + λ
∑

k
(k 6=n)

ψk(x)

ω2 − ω2
k

xb∫

xa

dx′ ψk(x
′)L1

ω ψ(x′) . (14.276)

By expanding ψ and ω2 in powers of λ, we can develop an order by order perturbation
series.

To lowest order, we have

ω2 = ω2
n + λ

xb∫

xa

dxψn(x)L1
ωn
ψn(x) . (14.277)

For the case L1
ω = −mω2 δ(x− d), we have

δωn

ωn

= −1
2m
[
ψn(d)

]2

= −m

M
sin2

(nπd
L

)
. (14.278)

For d = 1
2L, only the odd n modes are affected, as the even n modes have a node at x = 1

2L.
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Carried out to second order, one obtains for the eigenvalues,

ω2 = ω2
n + λ

xb∫

xa

dxψn(x)L1
ωn
ψn(x)

+ λ2
∑

k
(k 6=n)

∣∣∣
∫ xb

xa
dxψk(x)L

1
ωn
ψn(x)

∣∣∣
2

ω2
n − ω2

k

+ O(λ3)

− λ2

xb∫

xa

dxψn(x)L1
ωn
ψn(x) ·

xb∫

xa

dx′ µ1(x
′)
[
ψn(x′)

]2
+ O(λ3) . (14.279)


