
Chapter 9

Central Forces and Orbital
Mechanics

9.1 Reduction to a one-body problem

Consider two particles interacting via a potential U(r1, r2) = U
(
|r1 − r2|

)
. Such a poten-

tial, which depends only on the relative distance between the particles, is called a central

potential. The Lagrangian of this system is then

L = T − U = 1
2m1ṙ

2
1 + 1

2m2ṙ
2
2 − U

(
|r1 − r2|

)
. (9.1)

9.1.1 Center-of-mass (CM) and relative coordinates

The two-body central force problem may always be reduced to two independent one-body
problems, by transforming to center-of-mass (R) and relative (r) coordinates (see Fig. 9.1),
viz.

R =
m1r1 + m2r2

m1 + m2
r1 = R +

m2

m1 + m2
r (9.2)

r = r1 − r2 r2 = R − m1

m1 + m2
r (9.3)

We then have

L = 1
2m1ṙ1

2 + 1
2m2ṙ2

2 − U
(
|r1 − r2|

)
(9.4)

= 1
2MṘ2 + 1

2µṙ2 − U(r) . (9.5)

1
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Figure 9.1: Center-of-mass (R) and relative (r) coordinates.

where

M = m1 + m2 (total mass) (9.6)

µ =
m1m2

m1 + m2
(reduced mass) . (9.7)

9.1.2 Solution to the CM problem

We have ∂L/∂R = 0, which gives Ṙd = 0 and hence

R(t) = R(0) + Ṙ(0) t . (9.8)

Thus, the CM problem is trivial. The center-of-mass moves at constant velocity.

9.1.3 Solution to the relative coordinate problem

Angular momentum conservation: We have that ℓ = r × p = µr × ṙ is a constant of the
motion. This means that the motion r(t) is confined to a plane perpendicular to ℓ. It is
convenient to adopt two-dimensional polar coordinates (r, φ). The magnitude of ℓ is

ℓ = µr2φ̇ = 2µȦ (9.9)

where dA = 1
2r2dφ is the differential element of area subtended relative to the force center.

The relative coordinate vector for a central force problem subtends equal areas in equal times.

This is known as Kepler’s Second Law.
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Energy conservation: The equation of motion for the relative coordinate is

d

dt

(
∂L

∂ṙ

)
=

∂L

∂r
⇒ µr̈ = −∂U

∂r
. (9.10)

Taking the dot product with ṙ, we have

0 = µr̈ · ṙ +
∂U

∂r
· ṙ

=
d

dt

{
1
2µṙ2 + U(r)

}
=

dE

dt
. (9.11)

Thus, the relative coordinate contribution to the total energy is itself conserved. The total
energy is of course Etot = E + 1

2MṘ2.

Since ℓ is conserved, and since r · ℓ = 0, all motion is confined to a plane perpendicular to
ℓ. Choosing coordinates such that ẑ = ℓ̂, we have

E = 1
2µṙ2 + U(r) = 1

2µṙ2 +
ℓ2

2µr2
+ U(r)

= 1
2µṙ2 + Ueff(r) (9.12)

Ueff(r) =
ℓ2

2µr2
+ U(r) . (9.13)

Integration of the Equations of Motion, Step I: The second order equation for r(t)
is

dE

dt
= 0 ⇒ µr̈ =

ℓ2

µr3
− dU(r)

dr
= −dUeff(r)

dr
. (9.14)

However, conservation of energy reduces this to a first order equation, via

ṙ = ±
√

2

µ

(
E − Ueff(r)

)
⇒ dt = ±

√
µ
2 dr

√
E − ℓ2

2µr2 − U(r)
. (9.15)

This gives t(r), which must be inverted to obtain r(t). In principle this is possible. Note
that a constant of integration also appears at this stage – call it r0 = r(t = 0).

Integration of the Equations of Motion, Step II: After finding r(t) one can inte-
grate to find φ(t) using the conservation of ℓ:

φ̇ =
ℓ

µr2
⇒ dφ =

ℓ

µr2(t)
dt . (9.16)

This gives φ(t), and introduces another constant of integration – call it φ0 = φ(t = 0).

Pause to Reflect on the Number of Constants: Confined to the plane perpendicular
to ℓ, the relative coordinate vector has two degrees of freedom. The equations of motion
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are second order in time, leading to four constants of integration. Our four constants are
E, ℓ, r0, and φ0.

The original problem involves two particles, hence six positions and six velocities, making
for 12 initial conditions. Six constants are associated with the CM system: R(0) and Ṙ(0).
The six remaining constants associated with the relative coordinate system are ℓ (three

components), E, r0, and φ0.

Geometric Equation of the Orbit: From ℓ = µr2φ̇, we have

d

dt
=

ℓ

µr2

d

dφ
, (9.17)

leading to

d2r

dφ2
− 2

r

(
dr

dφ

)2

=
µr4

ℓ2
F (r) + r (9.18)

where F (r) = −dU(r)/dr is the magnitude of the central force. This second order equation
may be reduced to a first order one using energy conservation:

E = 1
2µṙ2 + Ueff(r)

=
ℓ2

2µr4

(
dr

dφ

)2
+ Ueff(r) . (9.19)

Thus,

dφ = ± ℓ√
2µ

· dr

r2
√

E − Ueff(r)
, (9.20)

which can be integrated to yield φ(r), and then inverted to yield r(φ). Note that only
one integration need be performed to obtain the geometric shape of the orbit, while two
integrations – one for r(t) and one for φ(t) – must be performed to obtain the full motion
of the system.

It is sometimes convenient to rewrite this equation in terms of the variable s = 1/r:

d2s

dφ2
+ s = − µ

ℓ2s2
F
(
s−1
)

. (9.21)

As an example, suppose the geometric orbit is r(φ) = k eαφ, known as a logarithmic spiral.
What is the force? We invoke (9.18), with s′′(φ) = α2 s, yielding

F
(
s−1
)

= −(1 + α2)
ℓ2

µ
s3 ⇒ F (r) = −C

r3
(9.22)

with

α2 =
µC

ℓ2
− 1 . (9.23)
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Figure 9.2: Stable and unstable circular orbits. Left panel: U(r) = −k/r produces a stable
circular orbit. Right panel: U(r) = −k/r4 produces an unstable circular orbit.

The general solution for s(φ) for this force law is

s(φ) =





A cosh(αφ) + B sinh(−αφ) if ℓ2 > µC

A′ cos
(
|α|φ

)
+ B′ sin

(
|α|φ

)
if ℓ2 < µC .

(9.24)

The logarithmic spiral shape is a special case of the first kind of orbit.

9.2 Almost Circular Orbits

A circular orbit with r(t) = r0 satisfies r̈ = 0, which means that U ′
eff(r0) = 0, which says

that F (r0) = −ℓ2/µr3
0. This is negative, indicating that a circular orbit is possible only if

the force is attractive over some range of distances. Since ṙ = 0 as well, we must also have
E = Ueff(r0). An almost circular orbit has r(t) = r0 + η(t), where |η/r0| ≪ 1. To lowest
order in η, one derives the equations

d2η

dt2
= −ω2 η , ω2 =

1

µ
U ′′

eff(r0) . (9.25)

If ω2 > 0, the circular orbit is stable and the perturbation oscillates harmonically. If ω2 < 0,
the circular orbit is unstable and the perturbation grows exponentially. For the geometric
shape of the perturbed orbit, we write r = r0 + η, and from (9.18) we obtain

d2η

dφ2
=

(
µr4

0

ℓ2
F ′(r0) − 3

)
η = −β2 η , (9.26)

with

β2 = 3 +
d ln F (r)

d ln r

∣∣∣∣∣
r0

. (9.27)
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The solution here is
η(φ) = η0 cos β(φ − δ0) , (9.28)

where η0 and δ0 are initial conditions. Setting η = η0, we obtain the sequence of φ values

φn = δ0 +
2πn

β
, (9.29)

at which η(φ) is a local maximum, i.e. at apoapsis, where r = r0 + η0. Setting r = r0 − η0

is the condition for closest approach, i.e. periapsis. This yields the identical set if angles,
just shifted by π. The difference,

∆φ = φn+1 − φn − 2π = 2π
(
β−1 − 1

)
, (9.30)

is the amount by which the apsides (i.e. periapsis and apoapsis) precess during each cycle.
If β > 1, the apsides advance, i.e. it takes less than a complete revolution ∆φ = 2π between
successive periapses. If β < 1, the apsides retreat, and it takes longer than a complete
revolution between successive periapses. The situation is depicted in Fig. 9.3 for the case
β = 1.1. Below, we will exhibit a soluble model in which the precessing orbit may be
determined exactly. Finally, note that if β = p/q is a rational number, then the orbit is
closed , i.e. it eventually retraces itself, after every q revolutions.

As an example, let F (r) = −kr−α. Solving for a circular orbit, we write

U ′
eff(r) =

k

rα
− ℓ2

µr3
= 0 , (9.31)

which has a solution only for k > 0, corresponding to an attractive potential. We then find

r0 =

(
ℓ2

µk

)1/(3−α)

, (9.32)

and β2 = 3 − α. The shape of the perturbed orbits follows from η′′ = −β2 η. Thus, while
circular orbits exist whenever k > 0, small perturbations about these orbits are stable only
for β2 > 0, i.e. for α < 3. One then has η(φ) = A cos β(φ − φ0). The perturbed orbits are
closed, at least to lowest order in η, for α = 3 − (p/q)2, i.e. for β = p/q. The situation is
depicted in Fig. 9.2, for the potentials U(r) = −k/r (α = 2) and U(r) = −k/r4 (α = 5).

9.3 Precession in a Soluble Model

Let’s start with the answer and work backwards. Consider the geometrical orbit,

r(φ) =
r0

1 − ǫ cos βφ
. (9.33)

Our interest is in bound orbits, for which 0 ≤ ǫ < 1 (see Fig. 9.3). What sort of potential
gives rise to this orbit? Writing s = 1/r as before, we have

s(φ) = s0 (1 − ε cos βφ) . (9.34)
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Substituting into (9.21), we have

− µ

ℓ2s2
F
(
s−1
)

=
d2s

dφ2
+ s

= β2 s0 ǫ cos βφ + s

= (1 − β2) s + β2 s0 , (9.35)

from which we conclude

F (r) = − k

r2
+

C

r3
, (9.36)

with

k = β2s0
ℓ2

µ
, C = (β2 − 1)

ℓ2

µ
. (9.37)

The corresponding potential is

U(r) = −k

r
+

C

2r2
+ U∞ , (9.38)

where U∞ is an arbitrary constant, conveniently set to zero. If µ and C are given, we have

r0 =
ℓ2

µk
+

C

k
, β =

√
1 +

µC

ℓ2
. (9.39)

When C = 0, these expressions recapitulate those from the Kepler problem. Note that
when ℓ2 + µC < 0 that the effective potential is monotonically increasing as a function of
r. In this case, the angular momentum barrier is overwhelmed by the (attractive, C < 0)
inverse square part of the potential, and Ueff(r) is monotonically increasing. The orbit then
passes through the force center. It is a useful exercise to derive the total energy for the
orbit,

E = (ε2 − 1)
µk2

2(ℓ2 + µC)
⇐⇒ ε2 = 1 +

2E(ℓ2 + µC)

µk2
. (9.40)

9.4 The Kepler Problem: U(r) = −k r
−1

9.4.1 Geometric shape of orbits

The force is F (r) = −kr−2, hence the equation for the geometric shape of the orbit is

d2s

dφ2
+ s = − µ

ℓ2s2
F (s−1) =

µk

ℓ2
, (9.41)

with s = 1/r. Thus, the most general solution is

s(φ) = s0 − C cos(φ − φ0) , (9.42)
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Figure 9.3: Precession in a soluble model, with geometric orbit r(φ) = r0/(1 − ε cos βφ),
shown here with β = 1.1. Periapsis and apoapsis advance by ∆φ = 2π(1 − β−1) per cycle.

where C and φ0 are constants. Thus,

r(φ) =
r0

1 − ε cos(φ − φ0)
, (9.43)

where r0 = ℓ2/µk and where we have defined a new constant ε ≡ Cr0.

9.4.2 Laplace-Runge-Lenz vector

Consider the vector

A = p × ℓ − µk r̂ , (9.44)
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Figure 9.4: The effective potential for the Kepler problem, and associated phase curves.
The orbits are geometrically described as conic sections: hyperbolae (E > 0), parabolae
(E = 0), ellipses (Emin < E < 0), and circles (E = Emin).

where r̂ = r/|r| is the unit vector pointing in the direction of r. We may now show that A

is conserved:

dA

dt
=

d

dt

{
p × ℓ − µk

r

r

}

= ṗ × ℓ + p × ℓ̇ − µk
rṙ − rṙ

r2

= −kr

r3
× (µr × ṙ) − µk

ṙ

r
+ µk

ṙr

r2

= −µk
r(r · ṙ)

r3
+ µk

ṙ(r · r)

r3
− µk

ṙ

r
+ µk

ṙr

r2
= 0 . (9.45)

So A is a conserved vector which clearly lies in the plane of the motion. A points toward
periapsis, i.e. toward the point of closest approach to the force center.

Let’s assume apoapsis occurs at φ = φ0. Then

A · r = −Ar cos(φ − φ0) = ℓ2 − µkr (9.46)

giving

r(φ) =
ℓ2

µk − A cos(φ − φ0)
=

a(1 − ε2)

1 − ε cos(φ − φ0)
, (9.47)

where

ε =
A

µk
, a(1 − ε2) =

ℓ2

µk
. (9.48)
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The orbit is a conic section with eccentricity ε. Squaring A, one finds

A2 = (p × ℓ)2 − 2µk r̂ · p × ℓ + µ2k2

= p2ℓ2 − 2µℓ2 k

r
+ µ2k2

= 2µℓ2

(
p2

2µ
− k

r
+

µk2

2ℓ2

)
= 2µℓ2

(
E +

µk2

2ℓ2

)
(9.49)

and thus

a = − k

2E
, ε2 = 1 +

2Eℓ2

µk2
. (9.50)

9.4.3 Kepler orbits are conic sections

There are four classes of conic sections:

• Circle: ε = 0, E = −µk2/2ℓ2, radius a = ℓ2/µk. The force center lies at the center of
circle.

• Ellipse: 0 < ε < 1, −µk2/2ℓ2 < E < 0, semimajor axis a = −k/2E, semiminor axis
b = a

√
1 − ε2. The force center is at one of the foci.

• Parabola: ε = 1, E = 0, force center is the focus.

• Hyperbola: ε > 1, E > 0, force center is closest focus (attractive) or farthest focus
(repulsive).

To see that the Keplerian orbits are indeed conic sections, consider the ellipse of Fig. 9.6.
The law of cosines gives

ρ2 = r2 + 4f2 − 4rf cos φ , (9.51)

where f = εa is the focal distance. Now for any point on an ellipse, the sum of the distances
to the left and right foci is a constant, and taking φ = 0 we see that this constant is 2a.
Thus, ρ = 2a − r, and we have

(2a − r)2 = 4a2 − 4ar + r2 = r2 + 4ε2a2 − 4εr cos φ

⇒ r(1 − ε cos φ) = a(1 − ε2) . (9.52)

Thus, we obtain

r(φ) =
a (1 − ε2)

1 − ε cos φ
, (9.53)

and we therefore conclude that

r0 =
ℓ2

µk
= a (1 − ε2) . (9.54)
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Figure 9.5: Keplerian orbits are conic sections, classified according to eccentricity: hyper-
bola (ǫ > 1), parabola (ǫ = 1), ellipse (0 < ǫ < 1), and circle (ǫ = 0). The Laplace-Runge-
Lenz vector, A, points toward periapsis.

Next let us examine the energy,

E = 1
2µṙ2 + Ueff(r)

= 1
2µ

(
ℓ

µr2

dr

dφ

)2

+
ℓ2

2µr2
− k

r

=
ℓ2

2µ

(
ds

dφ

)2

+
ℓ2

2µ
s2 − ks , (9.55)

with

s =
1

r
=

µk

ℓ2

(
1 − ε cos φ

)
. (9.56)

Thus,

ds

dφ
=

µk

ℓ2
ε sin φ , (9.57)
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Figure 9.6: The Keplerian ellipse, with the force center at the left focus. The focal distance
is f = εa, where a is the semimajor axis length. The length of the semiminor axis is
b =

√
1 − ε2 a.

and
(

ds

dφ

)2

=
µ2k2

ℓ4
ε2 sin2φ

=
µ2k2ε2

ℓ4
−
(

µk

ℓ2
− s

)2

= −s2 +
2µk

ℓ2
s +

µ2k2

ℓ4

(
ε2 − 1

)
. (9.58)

Substituting this into eqn. 9.55, we obtain

E =
µk2

2ℓ2

(
ε2 − 1

)
. (9.59)

For the hyperbolic orbit, depicted in Fig. 9.7, we have r − ρ = ∓2a, depending on whether
we are on the attractive or repulsive branch, respectively. We then have

(r ± 2a)2 = 4a2 ± 4ar + r2 = r2 + 4ε2a2 − 4εr cos φ

⇒ r(±1 + ε cos φ) = a(ε2 − 1) . (9.60)

This yields

r(φ) =
a (ε2 − 1)

±1 + ε cos φ
. (9.61)

9.4.4 Period of bound Kepler orbits

From ℓ = µr2φ̇ = 2µȦ, the period is τ = 2µA/ℓ, where A = πa2
√

1 − ε2 is the area enclosed
by the orbit. This gives

τ = 2π

(
µa3

k

)1/2

= 2π

(
a3

GM

)1/2

(9.62)
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Figure 9.7: The Keplerian hyperbolae, with the force center at the left focus. The left (blue)
branch corresponds to an attractive potential, while the right (red) branch corresponds to
a repulsive potential. The equations of these branches are r = ρ = ∓2a, where the top sign
corresponds to the left branch and the bottom sign to the right branch.

as well as
a3

τ2
=

GM

4π2
, (9.63)

where k = Gm1m2 and M = m1 + m2 is the total mass. For planetary orbits, m1 = M⊙ is

the solar mass and m2 = mp is the planetary mass. We then have

a3

τ2
=
(
1 +

mp

M⊙

)GM⊙

4π2
≈ GM⊙

4π2
, (9.64)

which is to an excellent approximation independent of the planetary mass. (Note that

mp/M⊙ ≈ 10−3 even for Jupiter.) This analysis also holds, mutatis mutandis, for the
case of satellites orbiting the earth, and indeed in any case where the masses are grossly
disproportionate in magnitude.

9.4.5 Escape velocity

The threshold for escape from a gravitational potential occurs at E = 0. Since E = T + U
is conserved, we determine the escape velocity for a body a distance r from the force center
by setting

E = 0 = 1
2µv2

esc(t) −
GMm

r
⇒ vesc(r) =

√
2G(M + m)

r
. (9.65)

When M ≫ m, vesc(r) =
√

2GM/r. Thus, for an object at the surface of the earth,
vesc =

√
2gRE = 11.2 km/s.
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9.4.6 Satellites and spacecraft

A satellite in a circular orbit a distance h above the earth’s surface has an orbital period

τ =
2π√
GME

(RE + h)3/2 , (9.66)

where we take msatellite ≪ ME. For low earth orbit (LEO), h ≪ RE = 6.37× 106 m, in which

case τLEO = 2π
√

RE/g = 1.4 hr.

Consider a weather satellite in an elliptical orbit whose closest approach to the earth
(perigee) is 200 km above the earth’s surface and whose farthest distance (apogee) is 7200
km above the earth’s surface. What is the satellite’s orbital period? From Fig. 9.6, we see
that

dapogee = RE + 7200 km = 13571 km

dperigee = RE + 200 km = 6971 km

a = 1
2 (dapogee + dperigee) = 10071 km . (9.67)

We then have

τ =
( a

RE

)3/2
· τLEO ≈ 2.65 hr . (9.68)

What happens if a spacecraft in orbit about the earth fires its rockets? Clearly the energy
and angular momentum of the orbit will change, and this means the shape will change. If
the rockets are fired (in the direction of motion) at perigee, then perigee itself is unchanged,
because v · r = 0 is left unchanged at this point. However, E is increased, hence the eccen-

tricity ε =
√

1 + 2Eℓ2

µk2 increases. This is the most efficient way of boosting a satellite into an

orbit with higher eccentricity. Conversely, and somewhat paradoxically, when a satellite in
LEO loses energy due to frictional drag of the atmosphere, the energy E decreases. Initially,
because the drag is weak and the atmosphere is isotropic, the orbit remains circular. Since
E decreases, 〈T 〉 = −E must increase, which means that the frictional forces cause the
satellite to speed up!

9.4.7 Two examples of orbital mechanics

• Problem #1: At perigee of an elliptical Keplerian orbit, a satellite receives an impulse
∆p = p0r̂. Describe the resulting orbit.

◦ Solution #1: Since the impulse is radial, the angular momentum ℓ = r × p is un-
changed. The energy, however, does change, with ∆E = p2

0/2µ. Thus,

ε2
f = 1 +

2Efℓ
2

µk2
= ε2

i +

(
ℓp0

µk

)2

. (9.69)
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Figure 9.8: At perigee of an elliptical orbit ri(φ), a radial impulse ∆p is applied. The shape
of the resulting orbit rf(φ) is shown.

The new semimajor axis length is

af =
ℓ2/µk

1 − ε2
f

= ai ·
1 − ε2

i

1 − ε2
f

=
ai

1 − (aip
2
0/µk)

. (9.70)

The shape of the final orbit must also be a Keplerian ellipse, described by

rf(φ) =
ℓ2

µk
· 1

1 − εf cos(φ + δ)
, (9.71)

where the phase shift δ is determined by setting

ri(π) = rf(π) =
ℓ2

µk
· 1

1 + εi

. (9.72)

Solving for δ, we obtain
δ = cos−1

(
εi/εf

)
. (9.73)

The situation is depicted in Fig. 9.8.



16 CHAPTER 9. CENTRAL FORCES AND ORBITAL MECHANICS

Figure 9.9: The larger circular orbit represents the orbit of the earth. The elliptical orbit
represents that for an object orbiting the Sun with distance at perihelion equal to the Sun’s
radius.

• Problem #2: Which is more energy efficient – to send nuclear waste outside the solar
system, or to send it into the Sun?

◦ Solution #2: Escape velocity for the solar system is vesc,⊙(r) =
√

GM⊙/r. At a

distance aE, we then have vesc,⊙(aE) =
√

2 vE, where vE =
√

GM⊙/aE = 2πaE/τE =
29.9 km/s is the velocity of the earth in its orbit. The satellite is launched from earth,
and clearly the most energy efficient launch will be one in the direction of the earth’s
motion, in which case the velocity after escape from earth must be u =

(√
2− 1

)
vE =

12.4 km/s. The speed just above the earth’s atmosphere must then be ũ, where

1
2mũ2 − GMEm

RE

= 1
2mu2 , (9.74)

or, in other words,
ũ2 = u2 + v2

esc,E . (9.75)

We compute ũ = 16.7 km/s.

The second method is to place the trash ship in an elliptical orbit whose perihelion
is the Sun’s radius, R⊙ = 6.98 × 108 m, and whose aphelion is aE. Using the general
equation r(φ) = (ℓ2/µk)/(1 − ε cos φ) for a Keplerian ellipse, we therefore solve the
two equations

r(φ = π) = R⊙ =
1

1 + ε
· ℓ2

µk
(9.76)

r(φ = 0) = aE =
1

1 − ε
· ℓ2

µk
. (9.77)

We thereby obtain

ε =
aE − R⊙

aE + R⊙
= 0.991 , (9.78)
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which is a very eccentric ellipse, and

ℓ2

µk
=

a2
E v2

G(M⊙ + m)
≈ aE · v2

v2
E

= (1 − ε) aE =
2aER⊙

aE + R⊙
. (9.79)

Hence,

v2 =
2R⊙

aE + R⊙
v2

E , (9.80)

and the necessary velocity relative to earth is

u =

(√
2R⊙

aE + R⊙
− 1

)
vE ≈ −0.904 vE , (9.81)

i.e. u = −27.0 km/s. Launch is in the opposite direction from the earth’s orbital mo-
tion, and from ũ2 = u2 +v2

esc,E we find ũ = −29.2 km/s, which is larger (in magnitude)
than in the first scenario. Thus, it is cheaper to ship the trash out of the solar system
than to send it crashing into the Sun, by a factor ũ2

I /ũ
2
II = 0.327.

9.5 Appendix I : Mission to Neptune

Four earth-launched spacecraft have escaped the solar system: Pioneer 10 (launch 3/3/72),
Pioneer 11 (launch 4/6/73), Voyager 1 (launch 9/5/77), and Voyager 2 (launch 8/20/77).1

The latter two are still functioning, and each are moving away from the Sun at a velocity
of roughly 3.5 AU/yr.

As the first objects of earthly origin to leave our solar system, both Pioneer spacecraft
featured a graphic message in the form of a 6” x 9” gold anodized plaque affixed to the
spacecrafts’ frame. This plaque was designed in part by the late astronomer and popular
science writer Carl Sagan. The humorist Dave Barry, in an essay entitled Bring Back Carl’s

Plaque, remarks,

But the really bad part is what they put on the plaque. I mean, if we’re going to
have a plaque, it ought to at least show the aliens what we’re really like, right?
Maybe a picture of people eating cheeseburgers and watching “The Dukes of
Hazzard.” Then if aliens found it, they’d say, “Ah. Just plain folks.”

But no. Carl came up with this incredible science-fair-wimp plaque that features
drawings of – you are not going to believe this – a hydrogen atom and naked
people. To represent the entire Earth! This is crazy! Walk the streets of any
town on this planet, and the two things you will almost never see are hydrogen
atoms and naked people.

1There is a very nice discussion in the Barger and Olsson book on ‘Grand Tours of the Outer Planets’.

Here I reconstruct and extend their discussion.
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Figure 9.10: The unforgivably dorky Pioneer 10 and Pioneer 11 plaque.

During August, 1989, Voyager 2 investigated the planet Neptune. A direct trip to Neptune
along a Keplerian ellipse with rp = aE = 1AU and ra = aN = 30.06AU would take 30.6

years. To see this, note that rp = a (1 − ε) and ra = a (1 + ε) yield

a = 1
2

(
aE + aN

)
= 15.53AU , ε =

aN − aE

aN + aE

= 0.9356 . (9.82)

Thus,

τ = 1
2 τE ·

( a

aE

)3/2
= 30.6 yr . (9.83)

The energy cost per kilogram of such a mission is computed as follows. Let the speed of
the probe after its escape from earth be vp = λvE, and the speed just above the atmosphere

(i.e. neglecting atmospheric friction) is v0. For the most efficient launch possible, the probe
is shot in the direction of earth’s instantaneous motion about the Sun. Then we must have

1
2m v2

0 − GMEm

RE

= 1
2m (λ − 1)2 v2

E
, (9.84)

since the speed of the probe in the frame of the earth is vp − vE = (λ − 1) vE. Thus,

E

m
= 1

2v2
0 =

[
1
2(λ − 1)2 + h

]
v2

E (9.85)

v2
E

=
GM⊙

aE

= 6.24 × 107 RJ/kg ,
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Figure 9.11: Mission to Neptune. The figure at the lower right shows the orbits of Earth,
Jupiter, and Neptune in black. The cheapest (in terms of energy) direct flight to Neptune,
shown in blue, would take 30.6 years. By swinging past the planet Jupiter, the satellite can
pick up great speed and with even less energy the mission time can be cut to 8.5 years (red
curve). The inset in the upper left shows the scattering event with Jupiter.

where

h ≡ ME

M⊙
· aE

RE

= 7.050 × 10−2 . (9.86)

Therefore, a convenient dimensionless measure of the energy is

η ≡ 2E

mv2
E

=
v2
0

v2
E

= (λ − 1)2 + 2h . (9.87)

As we shall derive below, a direct mission to Neptune requires

λ ≥
√

2aN

aN + aE

= 1.3913 , (9.88)

which is close to the criterion for escape from the solar system, λesc =
√

2. Note that about
52% of the energy is expended after the probe escapes the Earth’s pull, and 48% is expended
in liberating the probe from Earth itself.

This mission can be done much more economically by taking advantage of a Jupiter flyby, as
shown in Fig. 9.11. The idea of a flyby is to steal some of Jupiter’s momentum and then fly



20 CHAPTER 9. CENTRAL FORCES AND ORBITAL MECHANICS

away very fast before Jupiter realizes and gets angry. The CM frame of the probe-Jupiter
system is of course the rest frame of Jupiter, and in this frame conservation of energy means
that the final velocity uf is of the same magnitude as the initial velocity ui. However, in

the frame of the Sun, the initial and final velocities are vJ + ui and vJ + uf , respectively,

where vJ is the velocity of Jupiter in the rest frame of the Sun. If, as shown in the inset
to Fig. 9.11, uf is roughly parallel to vJ, the probe’s velocity in the Sun’s frame will be
enhanced. Thus, the motion of the probe is broken up into three segments:

I : Earth to Jupiter

II : Scatter off Jupiter’s gravitational pull

III : Jupiter to Neptune

We now analyze each of these segments in detail. In so doing, it is useful to recall that the
general form of a Keplerian orbit is

r(φ) =
d

1 − ε cos φ
, d =

ℓ2

µk
=
∣∣ε2 − 1

∣∣ a . (9.89)

The energy is

E = (ε2 − 1)
µk2

2ℓ2
, (9.90)

with k = GMm, where M is the mass of either the Sun or a planet. In either case, M
dominates, and µ = Mm/(M + m) ≃ m to extremely high accuracy. The time for the

trajectory to pass from φ = φ1 to φ = φ2 is

T =

∫
dt =

φ2∫

φ1

dφ

φ̇
=

µ

ℓ

φ2∫

φ1

dφ r2(φ) =
ℓ3

µk2

φ2∫

φ1

dφ
[
1 − ε cos φ

]2 . (9.91)

For reference,

aE = 1AU aJ = 5.20AU aN = 30.06AU

ME = 5.972 × 1024 kg MJ = 1.900 × 1027 kg M⊙ = 1.989 × 1030 kg

with 1AU = 1.496 × 108 km. Here aE,J,N and M
E,J,⊙ are the orbital radii and masses of

Earth, Jupiter, and Neptune, and the Sun. The last thing we need to know is the radius of
Jupiter,

RJ = 9.558 × 10−4 AU .

We need RJ because the distance of closest approach to Jupiter, or perijove, must be RJ or
greater, or else the probe crashes into Jupiter!

9.5.1 I. Earth to Jupiter

The probe’s velocity at perihelion is vp = λvE. The angular momentum is ℓ = µaE · λvE,
whence

d =
(aEλvE)2

GM⊙
= λ2 aE . (9.92)
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From r(π) = aE, we obtain

εI = λ2 − 1 . (9.93)

This orbit will intersect the orbit of Jupiter if ra ≥ aJ, which means

d

1 − εI

≥ aJ ⇒ λ ≥
√

2aJ

aJ + aE

= 1.2952 . (9.94)

If this inequality holds, then intersection of Jupiter’s orbit will occur for

φJ = 2π − cos−1

(
aJ − λ2aE

(λ2 − 1) aJ

)
. (9.95)

Finally, the time for this portion of the trajectory is

τEJ = τE · λ3

φJ∫

π

dφ

2π

1
[
1 − (λ2 − 1) cos φ

]2 . (9.96)

9.5.2 II. Encounter with Jupiter

We are interested in the final speed vf of the probe after its encounter with Jupiter. We

will determine the speed vf and the angle δ which the probe makes with respect to Jupiter
after its encounter. According to the geometry of Fig. 9.11,

v2
f = v2

J + u2 − 2uvJ cos(χ + γ) (9.97)

cos δ =
v2

J + v2
f − u2

2vfvJ

(9.98)

Note that

v2
J

=
GM⊙

aJ

=
aE

aJ

· v2
E

. (9.99)

But what are u, χ, and γ?

To determine u, we invoke
u2 = v2

J
+ v2

i − 2vJvi cos β . (9.100)

The initial velocity (in the frame of the Sun) when the probe crosses Jupiter’s orbit is given
by energy conservation:

1
2m(λvE)2 − GM⊙m

aE

= 1
2mv2

i − GM⊙m

aJ

, (9.101)

which yields

v2
i =

(
λ2 − 2 +

2aE

aJ

)
v2

E
. (9.102)

As for β, we invoke conservation of angular momentum:

µ(vi cos β)aJ = µ(λvE)aE ⇒ vi cos β = λ
aE

aJ

vE . (9.103)
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The angle γ is determined from

vJ = vi cos β + u cos γ . (9.104)

Putting all this together, we obtain

vi = vE

√
λ2 − 2 + 2x (9.105)

u = vE

√
λ2 − 2 + 3x − 2λx3/2 (9.106)

cos γ =

√
x − λx√

λ2 − 2 + 3x − 2λx3/2
, (9.107)

where
x ≡ aE

aJ

= 0.1923 . (9.108)

We next consider the scattering of the probe by the planet Jupiter. In the Jovian frame,
we may write

r(φ) =
κRJ (1 + εJ)

1 + εJ cos φ
, (9.109)

where perijove occurs at
r(0) = κRJ . (9.110)

Here, κ is a dimensionless quantity, which is simply perijove in units of the Jovian radius.
Clearly we require κ > 1 or else the probe crashes into Jupiter! The probe’s energy in this
frame is simply E = 1

2mu2, which means the probe enters into a hyperbolic orbit about
Jupiter. Next, from

E =
k

2

ε2 − 1

ℓ2/µk
(9.111)

ℓ2

µk
= (1 + ε)κRJ (9.112)

we find

εJ = 1 + κ

(
RJ

aE

)(
M⊙

MJ

)(
u

vE

)2

. (9.113)

The opening angle of the Keplerian hyperbola is then φc = cos−1
(
ε−1

J

)
, and the angle χ is

related to φc through

χ = π − 2φc = π − 2 cos−1

(
1

εJ

)
. (9.114)

Therefore, we may finally write

vf =

√
x v2

E + u2 + 2u vE

√
x cos(2φc − γ) (9.115)

cos δ =
x v2

E
+ v2

f − u2

2 vf vE

√
x

. (9.116)
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Figure 9.12: Total time for Earth-Neptune mission as a function of dimensionless velocity
at perihelion, λ = vp/vE. Six different values of κ, the value of perijove in units of the
Jovian radius, are shown: κ = 1.0 (thick blue), κ = 5.0 (red), κ = 20 (green), κ = 50
(blue), κ = 100 (magenta), and κ = ∞ (thick black).

9.5.3 III. Jupiter to Neptune

Immediately after undergoing gravitational scattering off Jupiter, the energy and angular
momentum of the probe are

E = 1
2mv2

f − GM⊙m

aJ

(9.117)

and

ℓ = µ vf aJ cos δ . (9.118)

We write the geometric equation for the probe’s orbit as

r(φ) =
d

1 + ε cos(φ − φJ − α)
, (9.119)

where

d =
ℓ2

µk
=

(
vf aJ cos δ

vE aE

)2

aE . (9.120)

Setting E = (µk2/2ℓ2)(ε2 − 1), we obtain the eccentricity

ε =

√√√√1 +

(
v2
f

v2
E

− 2aE

aJ

)
d

aE

. (9.121)
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Note that the orbit is hyperbolic – the probe will escape the Sun – if vf > vE ·
√

2x. The
condition that this orbit intersect Jupiter at φ = φJ yields

cos α =
1

ε

(
d

aJ

− 1

)
, (9.122)

which determines the angle α. Interception of Neptune occurs at

d

1 + ε cos(φN − φJ − α)
= aN ⇒ φN = φJ + α + cos−1 1

ε

(
d

aN

− 1

)
. (9.123)

We then have

τJN = τE ·
(

d

aE

)3 φN∫

φJ

dφ

2π

1
[
1 + ε cos(φ − φJ − α)

]2 . (9.124)

The total time to Neptune is then the sum,

τEN = τEJ + τJN . (9.125)

In Fig. 9.12, we plot the mission time τEN versus the velocity at perihelion, vp = λvE, for
various values of κ. The value κ = ∞ corresponds to the case of no Jovian encounter at all.

9.6 Appendix II : Restricted Three-Body Problem

Problem : Consider the ‘restricted three body problem’ in which a light object of mass m
(e.g. a satellite) moves in the presence of two celestial bodies of masses m1 and m2 (e.g. the
sun and the earth, or the earth and the moon). Suppose m1 and m2 execute stable circular
motion about their common center of mass. You may assume m ≪ m2 ≤ m1.

(a) Show that the angular frequency for the motion of masses 1 and 2 is related to their
(constant) relative separation, by

ω2
0 =

GM

r3
0

, (9.126)

where M = m1 + m2 is the total mass.

Solution : For a Kepler potential U = −k/r, the circular orbit lies at r0 = ℓ2/µk, where
ℓ = µr2φ̇ is the angular momentum and k = Gm1m2. This gives

ω2
0 =

ℓ2

µ2 r4
0

=
k

µr3
0

=
GM

r3
0

, (9.127)

with ω0 = φ̇.

(b) The satellite moves in the combined gravitational field of the two large bodies; the
satellite itself is of course much too small to affect their motion. In deriving the motion
for the satellilte, it is convenient to choose a reference frame whose origin is the CM and
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Figure 9.13: The Lagrange points for the earth-sun system. Credit: WMAP project.

which rotates with angular velocity ω0. In the rotating frame the masses m1 and m2 lie,

respectively, at x1 = −αr0 and x2 = βr0, with

α =
m2

M
, β =

m1

M
(9.128)

and with y1 = y2 = 0. Note α + β = 1.

Show that the Lagrangian for the satellite in this rotating frame may be written

L = 1
2m
(
ẋ − ω0 y

)2
+ 1

2m
(
ẏ + ω0 x

)2
+

Gm1 m√
(x + αr0)

2 + y2

+
Gm2 m√

(x − βr0)
2 + y2

. (9.129)

Solution : Let the original (inertial) coordinates be (x0, y0). Then let us define the rotated
coordinates (x, y) as

x = cos(ω0t)x0 + sin(ω0t) y0 (9.130)

y = − sin(ω0t)x0 + cos(ω0t) y0 . (9.131)

Therefore,

ẋ = cos(ω0t) ẋ0 + sin(ω0t) ẏ0 + ω0 y (9.132)

ẏ = − sin(ω0t)x0 + cos(ω0t) y0 − ω0 x . (9.133)

Therefore
(ẋ − ω0 y)2 + (ẏ + ω0 x)2 = ẋ2

0 + ẏ2
0 , (9.134)
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The Lagrangian is then

L = 1
2m
(
ẋ − ω0 y

)2
+ 1

2m
(
ẏ + ω0 x

)2
+

Gm1 m√
(x − x1)

2 + y2
+

Gm2 m√
(x − x2)

2 + y2
, (9.135)

which, with x1 ≡ −αr0 and x2 ≡ βr0, agrees with eqn. 9.129

(c) Lagrange discovered that there are five special points where the satellite remains fixed
in the rotating frame. These are called the Lagrange points {L1, L2, L3, L4, L5}. A sketch
of the Lagrange points for the earth-sun system is provided in Fig. 9.13. Observation:

In working out the rest of this problem, I found it convenient to measure all distances in

units of r0 and times in units of ω−1
0 , and to eliminate G by writing Gm1 = β ω2

0 r3
0 and

Gm2 = α ω2
0 r3

0.

Assuming the satellite is stationary in the rotating frame, derive the equations for the
positions of the Lagrange points.

Solution : At this stage it is convenient to measure all distances in units of r0 and times
in units of ω−1

0 to factor out a term m r2
0 ω2

0 from L, writing the dimensionless Lagrangian

L̃ ≡ L/(m r2
0 ω2

0). Using as well the definition of ω2
0 to eliminate G, we have

L̃ = 1
2 (ξ̇ − η)2 + 1

2(η̇ + ξ)2 +
β√

(ξ + α)2 + η2
+

α√
(ξ − β)2 + η2

, (9.136)

with

ξ ≡ x

r0
, η ≡ y

r0
, ξ̇ ≡ 1

ω0 r0

dx

dt
, η̇ ≡ 1

ω0 r0

dy

dt
. (9.137)

The equations of motion are then

ξ̈ − 2η̇ = ξ − β(ξ + α)

d3
1

− α(ξ − β)

d3
2

(9.138)

η̈ + 2ξ̇ = η − βη

d3
1

− αη

d3
2

, (9.139)

where

d1 =
√

(ξ + α)2 + η2 , d2 =
√

(ξ − β)2 + η2 . (9.140)

Here, ξ ≡ x/r0, ξ = y/r0, etc. Recall that α + β = 1. Setting the time derivatives to zero
yields the static equations for the Lagrange points:

ξ =
β(ξ + α)

d3
1

+
α(ξ − β)

d3
2

(9.141)

η =
βη

d3
1

+
αη

d3
2

, (9.142)

(d) Show that the Lagrange points with y = 0 are determined by a single nonlinear equation.
Show graphically that this equation always has three solutions, one with x < x1, a second
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Figure 9.14: Graphical solution for the Lagrange points L1, L2, and L3.

with x1 < x < x2, and a third with x > x2. These solutions correspond to the points L3,
L1, and L2, respectively.

Solution : If η = 0 the second equation is automatically satisfied. The first equation then
gives

ξ = β · ξ + α
∣∣ξ + α

∣∣3 + α · ξ − β
∣∣ξ − β

∣∣3 . (9.143)

The RHS of the above equation diverges to +∞ for ξ = −α + 0+ and ξ = β + 0+, and
diverges to −∞ for ξ = −α− 0+ and ξ = β − 0+, where 0+ is a positive infinitesimal. The
situation is depicted in Fig. 9.14. Clearly there are three solutions, one with ξ < −α, one
with −α < ξ < β, and one with ξ > β.

(e) Show that the remaining two Lagrange points, L4 and L5, lie along equilateral triangles
with the two masses at the other vertices.

Solution : If η 6= 0, then dividing the second equation by η yields

1 =
β

d3
1

+
α

d3
2

. (9.144)

Substituting this into the first equation,

ξ =

(
β

d3
1

+
α

d3
2

)
ξ +

(
1

d3
1

− 1

d3
2

)
αβ , (9.145)
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gives
d1 = d2 . (9.146)

Reinserting this into the previous equation then gives the remarkable result,

d1 = d2 = 1 , (9.147)

which says that each of L4 and L5 lies on an equilateral triangle whose two other vertices
are the masses m1 and m2. The side length of this equilateral triangle is r0. Thus, the
dimensionless coordinates of L4 and L5 are

(
ξ
L4

, η
L4

)
=
(

1
2 − α,

√
3

2

)
,

(
ξ
L5

, η
L5

)
=
(

1
2 − α, −

√
3

2

)
. (9.148)

It turns out that L1, L2, and L3 are always unstable. Satellites placed in these positions
must undergo periodic course corrections in order to remain approximately fixed. The SOlar
and Heliopheric Observation satellite, SOHO, is located at L1, which affords a continuous
unobstructed view of the Sun.

(f) Show that the Lagrange points L4 and L5 are stable (obviously you need only consider
one of them) provided that the mass ratio m1/m2 is sufficiently large. Determine this
critical ratio. Also find the frequency of small oscillations for motion in the vicinity of L4
and L5.

Solution : Now we write

ξ = ξL4 + δξ , η = ηL4 + δη , (9.149)

and derive the linearized dynamics. Expanding the equations of motion to lowest order in
δξ and δη, we have

δξ̈ − 2δη̇ =

(
1 − β + 3

2β
∂d1

∂ξ

∣∣∣∣
L4

− α − 3
2α

∂d2

∂ξ

∣∣∣∣
L4

)
δξ +

(
3
2β

∂d1

∂η

∣∣∣∣
L4

− 3
2α

∂d2

∂η

∣∣∣∣
L4

)
δη

= 3
4 δξ + 3

√
3

4 ε δη (9.150)

and

δη̈ + 2δξ̇ =

(
3
√

3
2 β

∂d1

∂ξ

∣∣∣∣
L4

+ 3
√

3
2 α

∂d2

∂ξ

∣∣∣∣
L4

)
δξ +

(
3
√

3
2 β

∂d1

∂η

∣∣∣∣
L4

+ 3
√

3
2 α

∂d2

∂η

∣∣∣∣
L4

)
δη

= 3
√

3
4 ε δξ + 9

4 δη , (9.151)

where we have defined

ε ≡ β − α =
m1 − m2

m1 + m2
. (9.152)

As defined, ε ∈ [0, 1].
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Fourier transforming the differential equation, we replace each time derivative by (−iν),
and thereby obtain (

ν2 + 3
4 −2iν + 3

4

√
3 ε

2iν + 3
4

√
3 ε ν2 + 9

4

)(
δξ̂
δη̂

)
= 0 . (9.153)

Nontrivial solutions exist only when the determinant D vanishes. One easily finds

D(ν2) = ν4 − ν2 + 27
16

(
1 − ε2

)
, (9.154)

which yields a quadratic equation in ν2, with roots

ν2 = 1
2 ± 1

4

√
27 ε2 − 23 . (9.155)

These frequencies are dimensionless. To convert to dimensionful units, we simply multiply
the solutions for ν by ω0, since we have rescaled time by ω−1

0 .

Note that the L4 and L5 points are stable only if ε2 > 23
27 . If we define the mass ratio

γ ≡ m1/m2, the stability condition is equivalent to

γ =
m1

m2
>

√
27 +

√
23√

27 −
√

23
= 24.960 , (9.156)

which is satisfied for both the Sun-Jupiter system (γ = 1047) – and hence for the Sun and
any planet – and also for the Earth-Moon system (γ = 81.2).

Objects found at the L4 and L5 points are called Trojans, after the three large asteroids
Agamemnon, Achilles, and Hector found orbiting in the L4 and L5 points of the Sun-Jupiter
system. No large asteroids have been found in the L4 and L5 points of the Sun-Earth system.

Personal aside : David T. Wilkinson

The image in fig. 9.13 comes from the education and outreach program of the Wilkinson
Microwave Anisotropy Probe (WMAP) project, a NASA mission, launched in 2001, which
has produced some of the most important recent data in cosmology. The project is named
in honor of David T. Wilkinson, who was a leading cosmologist at Princeton, and a founder
of the Cosmic Background Explorer (COBE) satellite (launched in 1989). WMAP was sent
to the L2 Lagrange point, on the night side of the earth, where it can constantly scan the
cosmos with an ultra-sensitive microwave detector, shielded by the earth from interfering
solar electromagnetic radiation. The L2 point is of course unstable, with a time scale of
about 23 days. Satellites located at such points must undergo regular course and attitude
corrections to remain situated.

During the summer of 1981, as an undergraduate at Princeton, I was a member of Wilkin-
son’s “gravity group,” working under Jeff Kuhn and Ken Libbrecht. It was a pretty big
group and Dave – everyone would call him Dave – used to throw wonderful parties at his
home, where we’d always play volleyball. I was very fortunate to get to know David Wilkin-
son a bit – after working in his group that summer I took a class from him the following
year. He was a wonderful person, a superb teacher, and a world class physicist.


