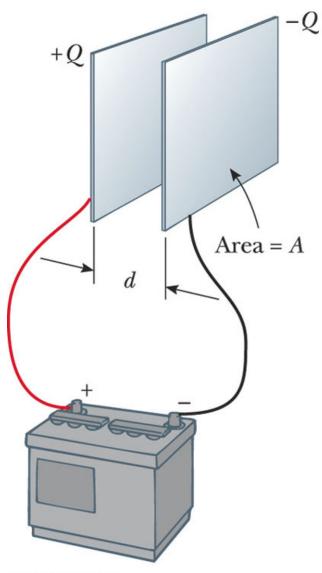


Note: +Q plate is connected to positive terminal of battery; -Q plate connected to – terminal.

Capacitance is defined as the ability to store separated charge.

 $C = Q / \Delta V$

Unit: FARAD = C/V

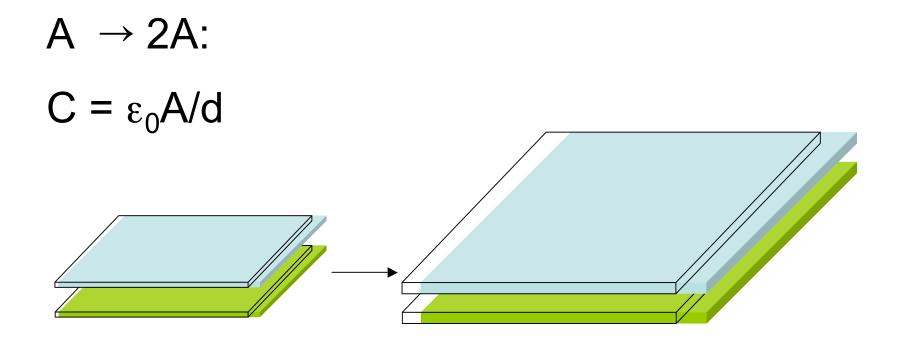


Parallel Plate Capacitor

Capacitance depends on geometry:

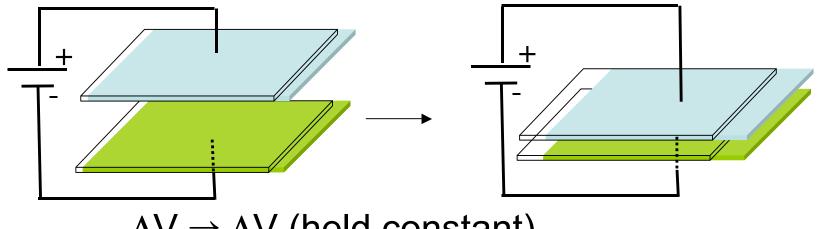
 $C = \varepsilon_0 A / d$

Double the area...



$C \rightarrow 2C$

If plates are HELD at a fixed potential difference ΔV which does not change as you decrease d:

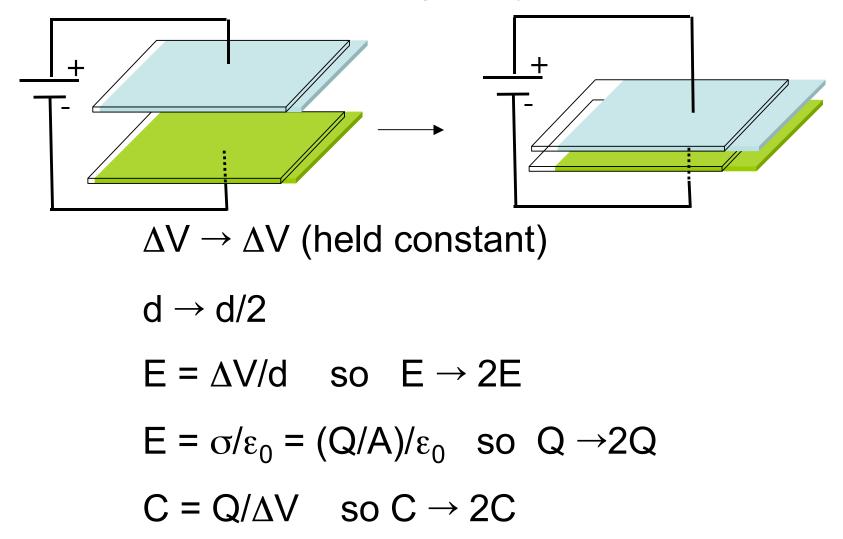


 $\Delta V \rightarrow \Delta V$ (held constant)

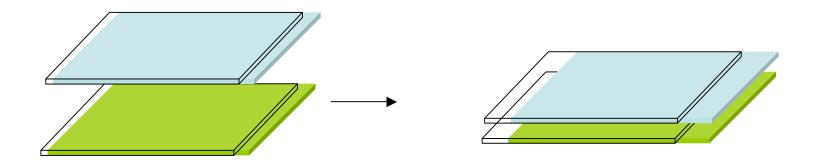
 $d \rightarrow d/2$

What happens to C & E?

If plates are HELD at a fixed potential difference ΔV which does not change as you decrease d:

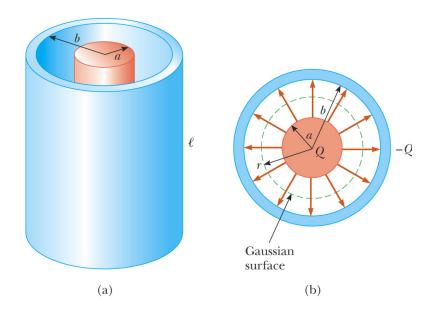


If plates are charged via a battery, then disconnected from it, what happens when d is then halved?



$$d \rightarrow d/2$$

Q → Q (isolated system) E = $\sigma/\epsilon_0 = (Q/A)/\epsilon_0$ so E →E ΔV=Ed so ΔV → ΔV/2 C = Q/ΔV = ϵ_0 A/d so C → 2C

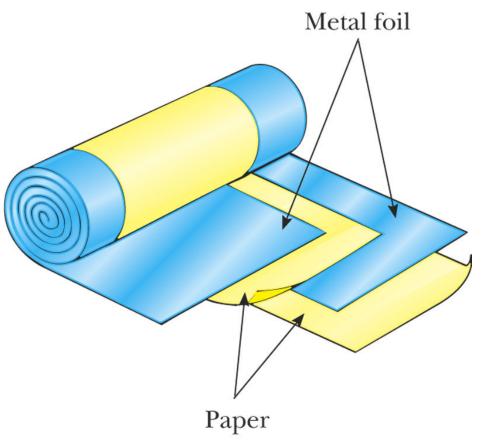


Cylindrical Capacitors

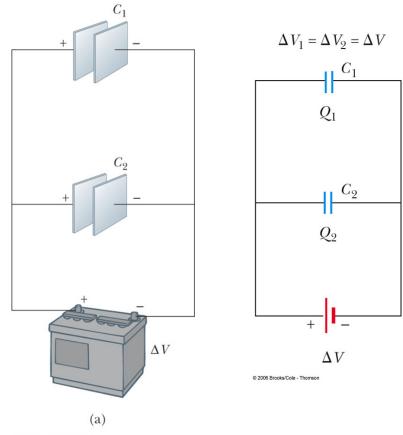
 $\begin{aligned} \Delta \mathbf{V} &= \mathbf{V}_b - \mathbf{V}_a = -\int_a^b E_r dr = -2k_e \lambda \int_a^b \frac{1}{r} dr = -2k_e \lambda \ln(\frac{b}{a}) \\ \text{Recall } \lambda &= Q/\ell \\ C &= \frac{Q}{\Delta V} = \frac{Q}{\frac{2k_e Q}{\ell} \ln(\frac{b}{a})} = \frac{\ell}{2k_e \ln(\frac{b}{a})} \end{aligned}$ Define capacitance per unit length $C/\ell = \frac{1}{2k_e \ln(b/a)}$

Capacitors with insulators (for small d)

With insulating material filling the gap, charges cannot travel from one plate to the other, but Efields can permeate.

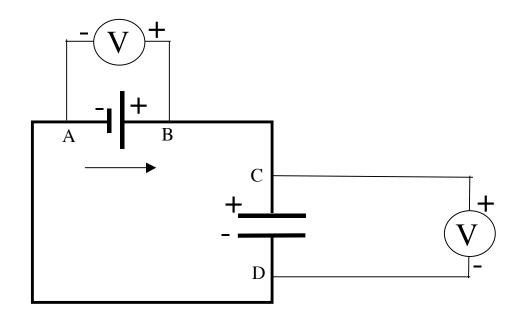


Circuit diagrams



Voltmeter

Measures ΔV between two points in a circuit



From A to B: Potential increases From C to D: Potential decreases

