Which is more stable?

That is, which has the lower total P.E.?
(closer to -infty \rightarrow more stable)

Total PE $=$ PE of each side + PE of each diagonal
$\mathrm{PE}_{\text {side }}=\mathrm{k}_{\mathrm{e}} \mathrm{q}_{1} \mathrm{q}_{2} / \mathrm{d}$ (pay attention to signs of charges!!!!)
$P E_{\text {diagonal }}=k_{e} q_{1} q_{2} /(d \sqrt{2})$

Which is more stable?

Define $P E_{0}=k_{e} q^{2 / d}$
Sides: $\mathrm{PE}_{0} \quad+2 \quad-2$
Diag.: $\mathrm{PE}_{0} / \sqrt{2} \quad-2$
Total PE $\quad(-2 / \sqrt{2}) P E_{0}=-1.41 \mathrm{PE}_{0}$

Yes, this
distribution is stable....
... but this one is
MORE stable!

The Size of Atomic Nuclei

Ernest Rutherford et al.'s scattering experiments, 1911
Goal: Probe structure of atoms: How are the + and charges distributed, and what's their size?

Figure 1 The experimental arrangement used in Rutherford's laboratory to study the scattering of α particles by thin metal foils. The detector can be rotated to various scattering angles θ.

Figure 3 The angle through which an α particle is scattered depends on how close its extended incident path lies to the nucleus of an atom. Large deflections result only from very close encounters.

Method: Fire positively charged alpha-particles (ionized He nuclei, $\mathrm{Z}=2$) at a very thin metal ($\mathrm{Au}, \mathrm{Z}=79$) foil
Most passed through, but a few were deflected through large angles-- including up to 180° !
(ch. 29)

Figure 1 The experimental arrangement used in Rutherford's laboratory to study the scattering of α particles by thin metal foils. The detector can be rotated to various scattering angles θ.

Figure 3 The angle through which an α particle is scattered depends on how close its extended incident path lies to the nucleus of an atom. Large deflections result only from very close encounters.

An alpha particle $\left(\mathrm{He}^{2+}=2 \mathrm{p}+2 \mathrm{n}\right.$, total mass $=$ $4^{*} 1.67^{*} 10^{-27} \mathrm{~kg}$) is fired at $\mathrm{v}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ and happens to be headed directly for the nucleus of a gold atom (79 p) at rest. How close does it get to the gold nucleus before the electric force brings it to a momentary stop and reverses its course? Neglect the recoil of the Au nucleus; neglect the Au atom's electrons.

The Size of Atomic Nuclei

Initially, total energy $=$ K.E. of $\mathrm{He}^{+2}($ P.E. $=$ zero since $\mathrm{d}=\infty)$
At closest interaction, total energy $=P . E .=k_{e} Q_{1} Q_{2} / d$
$d=k_{e} Q_{1} Q_{2} / K . E$.
K.E. $=1 / 2 \mathrm{~m}_{\text {Не }} \mathrm{v}^{2}=1 / 2\left(4^{* 1} 1.67 \times 10^{-27} \mathrm{~kg}\right)\left(1 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2}=3.3 \times 10^{-13} \mathrm{~J}$
$\mathrm{d}=\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)(2)(79)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2} /\left(3.3 \times 10^{-13} \mathrm{~J}\right)=1.1 \times 10^{-13} \mathrm{~m}$
$=110 \mathrm{fm}$
Size of nucleus must be smaller than this -- VERY compact compared to size of atom ($\sim 10^{-11} \mathrm{~m}$)

110 fm is small by atomic standards, but not by nuclear standards

Ch. 20.4

Obtaining the Electric Field from the Potential:
What do we do if V is function of position in space, described as $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$?
First, consider the case where the E-field has only one component:
$\Delta \mathrm{V}=-\overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$

$$
-\overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \text { becomes } E_{x} d x \text { and } E_{x}=-\frac{d V}{d x}
$$

Given $V(x, y, z)$ you can find E_{x}, E_{y} and E_{z} as partial derivatives:

$$
E_{x}=-\frac{\partial V}{\partial x} \quad E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z}
$$

Example: Suppose you have a 2-D potential quantified as $\mathrm{V}(\mathrm{x}, \mathrm{y})=\mathrm{Ax}+\mathrm{By}$
($\mathrm{A}, \mathrm{B}=$ some constants)
(two pairs of oppositely-charged parallel plates, arranged so that each one's E-fields are perp.)
$\mathrm{E}_{\mathrm{x}}=-\mathrm{dV} / \mathrm{dx}=-\mathrm{A}$
$E_{y}=-d V / d y=-B$
(potential increases as one goes towards +x and/or $+\mathrm{y}-$ - that means you're getting closer to the positively-charged plates)

If the charge distribution and electric field both have spherical symmetry, $\mathrm{dV}=-\mathrm{E}_{\mathrm{r}} \mathrm{dr}$
$E_{r}=-d V / d r$
Ex.: a point charge:

$$
\begin{aligned}
& \mathrm{V}=\mathrm{k}_{\mathrm{e}} \mathrm{q} / \mathrm{r} \\
& \mathrm{E}_{\mathrm{r}}=-(\mathrm{dV} / \mathrm{dr})=-\left(-\mathrm{k}_{\mathrm{e}} \mathrm{q} / \mathrm{r}^{2}\right)=\mathrm{k}_{\mathrm{e}} \mathrm{q} / \mathrm{r}^{2}
\end{aligned}
$$

Ch. 20.5

How to calculate V due to a continuous charge distribution (most general form)

Ch. 20.6: V of a charged conductor

Recall: excess charge resides on the suface, while inside, the E-field is zero.

Surface of a Charged Conductor

Potential is same at all points on conductor's surface E-field is \perp to surface at all points

No net work required to move a charge along surface
$W=-\Delta U$
$\Delta U=q\left(V_{b}-V_{a}\right)$
If $V_{a}=V_{b}$, then $W=0$!

Interior of a Charged Conductor

At all points inside a
conductor, the potential is constant and the same as at the surface

Reminder: E = 0 inside the conductor
$\Delta V=E d=0 d$
So V must be constant

© 2006 Brooks/Cole - Thomson

Figure 20.14:

Irregularly-shaped objects: Fig 20.15

All surface points must be at same potential

$$
k_{e} \frac{q_{1}}{r_{1}}=k_{e} \frac{q_{2}}{r_{2}} \rightarrow \frac{q_{1}}{q_{2}}=\frac{r_{1}}{r_{2}}
$$

rger sphere has the larger amount of charge. Le nsities on the two spheres, however:

$$
\frac{\sigma_{2}}{\sigma_{1}}=\frac{\left(\frac{q_{2}}{4 \pi r_{2}^{2}}\right)}{\left(\frac{q_{1}}{4 \pi r_{1}^{2}}\right)}=\frac{q_{2}}{q_{1}} \frac{r_{1}^{2}}{r_{2}^{2}}=\frac{r_{2}}{r_{1}} \frac{r_{1}^{2}}{r_{2}^{2}}=\frac{r_{1}}{r_{2}}
$$

Smaller radius of curvature $=$ higher surface density of charge

Charge-free cavity inside a conductor

The electric field inside the conductor is must be zero and does not depend on the charge distribution on the outside surface of the conductor For all paths between A and $\mathrm{B}, \Delta \mathrm{V}=$

$$
V_{B}-V_{A}=-\int \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=0
$$

A cavity surrounded by conducting walls is a field-free region as long as no charges are inside the cavity

Thunderstorms:

From ground to cloud base: $\Delta \mathrm{V} \sim 10^{7-8} \mathrm{~V}, \quad \mathrm{E} \sim 10^{4-5} \mathrm{~V} / \mathrm{m}$

Lightning: $E=3 \times 10^{6} \mathrm{~V} / \mathrm{m}$ is
electric field strength at which air becomes ionized enough to act as a conductor.

Fair weather: $\mathrm{E} \sim 10^{2} \mathrm{~V} / \mathrm{m}$

Batteries

- Offer constant potential difference ΔV, yielding a steady amount of charge through relatively slow chemical reactions.
-Electrons flow from the negative terminal to the positive terminal.
-Reaction doesn't take place unless the terminals are connected to something (so batt. can sit on shelf for a while and still have lots of power) -If you attach a wire between the terminals directly, with no load, you'll wear out the battery quickly.

Parts of a battery

Example: Zn / C battery:
Negative terminal: Zn
Positive terminal: C
Electrolyte: sulfuric acid conducting wire
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Zn} \rightarrow \quad \mathrm{SO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{H}^{+}+\mathrm{Zn}^{2+}+\mathrm{e}^{-}+\mathrm{e}^{-}$
$\mathrm{Zn}^{2+}+\mathrm{SO}_{4}^{-} \rightarrow \mathrm{ZnSO}_{4}$
The e-'s from the zinc atoms flow through the wire and combine with H on the Carbon rod. (lower potential V : easier then combining with the H^{+}in the acid)

Different combinations of metals and electrolytes (medium) control the final voltage

- Zinc-carbon battery - Also known as a standard carbon battery, zinc-carbon chemistry is used in all inexpensive AA, C and D dry-cell batteries. The electrodes are zinc and carbon, with an acidic paste between them that serves as the electrolyte.
- Alkaline battery - Alkaline chemistry is used in common Duracell and Energizer batteries, the electrodes are zinc and manganese-oxide, with an alkaline electrolyte.
- Lithium-iodide battery - Lithium-iodide chemistry is used in pacemakers and hearing aides because of their long life.
- Lead-acid battery - Lead-acid chemistry is used in automobiles, the electrodes are made of lead and lead-oxide with a strong acidic electrolyte (rechargeable).
- Nickel-cadmium battery - The electrodes are nickel-hydroxide and cadmium, with potassium-hydroxide as the electrolyte (rechargeable).
- Nickel-metal hydride battery - This battery is rapidly replacing nickel-cadmium because it does not suffer from the memory effect that nickel-cadmiums do (rechargeable).
- Lithium-ion battery - With a very good power-to-weight ratio, this is often found in high-end laptop computers and cell phones (rechargeable).
- Zinc-air battery - This battery is lightweight and rechargeable.
- Zinc-mercury oxide battery - This is often used in hearing-aids.
- Silver-zinc battery - This is used in aeronautical applications because the power-to-weight ratio is good.
(http://electronics.howstuffworks.com/battery.htm)

Lemon Battery

http://hilaroad.com/camp/projects/lemon/lemon_battery.html http://www.ehow.com/how-does_5474935_lemon-battery-works.html

Lemons contain citric acid (electrolyte) Negative terminal: Galvanized nail (Zn coating)
Positive terminal: Cu penny
$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
The copper attracts the electrons
When the electrons reach the other end: $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$

Anode (neg.): Zn from coins, galvanized nuts, bolts, washers

Cathode (pos.): graphite + mercuric oxide from the RV's brake pads

Electrolyte: sponge in potassium hydroxide: (supply $\mathrm{K}+$ and OH - ions)

Conductor: Cu wire

Connecting cells in series

2 Charged Planes

Equipotential surfaces are parallel to the planes and \perp to the E-field lines

Capacitors \& Capacitance

Capacitor: a device for storing electrical potential energy

Can also be rapidly discharged to release a large amount of energy at once

Applications: camera flashes, automobile ignition systems, computer memory, laser flash lamps, defibrillators

Laser Fusion at the Nat'I Ignition Facility, Livermore, CA. $10^{6} \mathrm{~J}$ released in $\mu \mathrm{s}$: Power ~ $10^{12} \mathrm{~W}$

Credit:: LLNL
-A discharging capacitor delivers a large quantity of charge at once (if current is unregulated by resistors -- to be discussed in ch 21)
-Batteries: Offer constant potential difference $\Delta \mathrm{V}$, yielding a steady amount of charge through relatively slow chemical reactions.

A Capacitor

Capacitance is defined as the ability to store separated charge.
$\mathrm{C}=\mathrm{Q} / \Delta \mathrm{V}$
Unit: FARAD $=C / V$

Parallel Plate Capacitor

Note E-field inside is pretty uniform. E-field outside is relatively negligible

Q 2006 Brooks/Cole - Thomson
Charges like to accumulate at inner edges of plates

Parallel Plate Capacitor

Capacitance depends on geometry:

$$
C=\varepsilon_{0} A / d
$$

Variable capacitor: C depends on "overlapping" area

Example:

A parallel-plate capacitor with $A=4 \mathbf{c m}^{2}, d=1$ mm . Find its capacitance.
$C=\varepsilon_{0} A / d=\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}\right)\left(4 \times 10^{-4} \mathrm{~m}^{2}\right) /\left(10^{-3} \mathrm{~m}\right)$
$=3.54 \times 10^{-12} \mathrm{~F}=3.54 \mathrm{pF}$

If the capacitor is connected to a 9 Volt battery, how much charge is on each plate?
$\mathrm{C}=\mathrm{Q} / \Delta \mathrm{V} \rightarrow \mathrm{Q}=\mathrm{C} \Delta \mathrm{V}=\left(3.54 \times 10^{-12} \mathrm{~F}\right)(9 \mathrm{~V})$ $=3.2 \times 10^{-11} \mathrm{C}$

Calculate the charge density on one plate (assume uniform distribution).

$$
\sigma=Q / A=3.2 \times 10^{-11} \mathrm{C} / 4 \times 10^{-4} \mathrm{~m}^{2}=8 \times 10^{-8} \mathrm{C} / \mathrm{m}^{2}
$$

Calculate the magnitude of the E-field inside the capacitor.
$\mathrm{E}=\sigma / \varepsilon_{0}=\left(8 \times 10^{-8} \mathrm{C} / \mathrm{m}^{2}\right) /\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}\right)$
$=9000$ N/C

Double the area...

$A \rightarrow 2 A:$
$C=\varepsilon_{0} A / d$

$C \rightarrow 2 C \quad .$. you double the capacitance!

