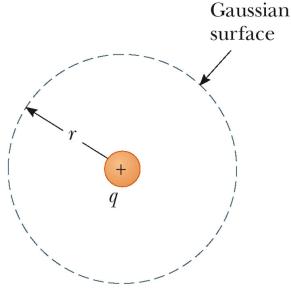
Gauss' Law



At radius
$$r$$
: $E = \frac{k_e q}{r^2}$
 $\Phi_E = E \times Area = \frac{k_e q}{r^2} \times (4\pi r^2)$

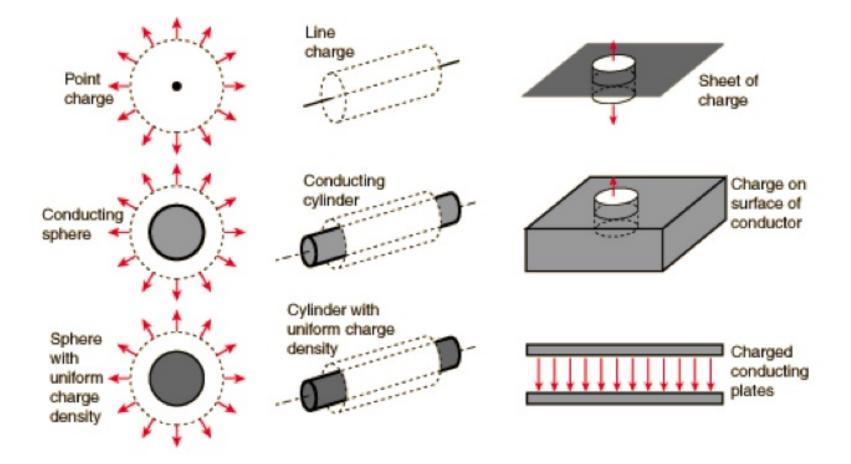
Define $\epsilon_0 = \frac{1}{4\pi k_e} = 8.85 \times 10^{-12} \frac{C^2}{Nm^2}$ $\epsilon_0 = \text{permittivity of free space}$

© 2006 Brooks/Cole - Thomson

$$\Phi_{\rm E} = Q_{\rm encl} / \varepsilon_0$$

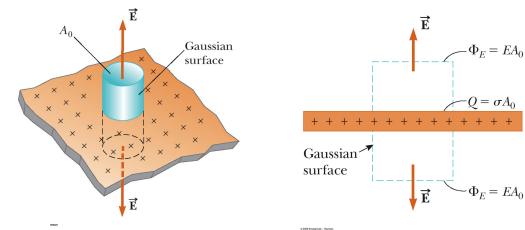
Sample Gaussian surfaces

Hint: Choose surfaces such that \overrightarrow{E} is \perp or || to surface!



Gauss' Law: A sheet of charge

Define σ = charge per unit area



$$\Phi_E = EA = Q_{encl}/\epsilon_0$$

A = area of top +10

bottom surfaces = 2
$$A$$

 $Q_{encl} = \sigma A_0$

This is the magnitude of \vec{E} . \vec{E} points away from the the plane. $\vec{E} = + \frac{\sigma}{2\epsilon_0}$ above the plane $\vec{E} = -\frac{\sigma}{2\epsilon_0}$ below the plane

 $E = \frac{\sigma}{2\epsilon_0}$

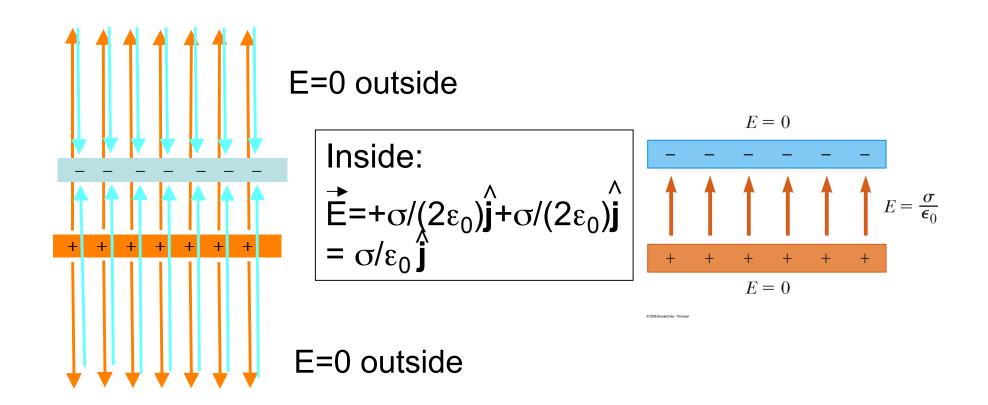
 $EA = \frac{\sigma A_0}{\epsilon_0}$

 $E = \frac{\sigma A_0}{2A_0\epsilon_0}$

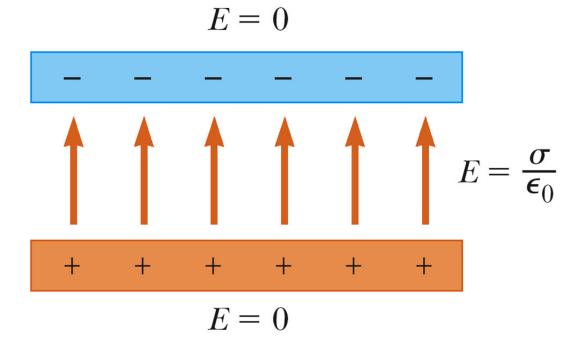
2 planes with opposing charges $E = -\sigma/(2\varepsilon_0)j$ $E = -\sigma/(2\varepsilon_0)j$ $E = -\sigma/(2\varepsilon_0)j$

+

2 planes with opposing charges

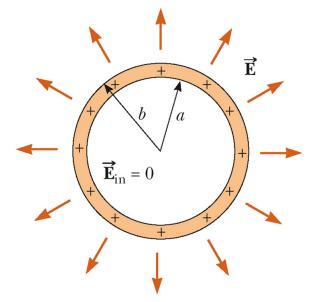


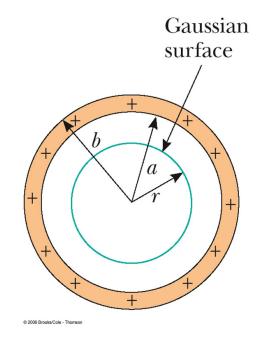
2 planes with opposing charges



© 2006 Brooks/Cole - Thomson

Gauss' Law: Charged Spherical Shell





@ 2006 Brooks/Cole - Thomson

At r < a: $\vec{E} = 0$.

Gauss' Law: Charged Spherical Shell

At
$$r > b$$
, $\Phi_E = EA = E4\pi r^2 = Q_{encl}/\epsilon_0$
Surface
Divide both sides by area:
 $E = \frac{Q_{encl}}{4\pi\epsilon_0 r^2}$

At r > b, \vec{E} looks like that from a single point charge Q

Ex. 19.11, then 19.10

E-field a distance r from an infinite line of charge (charge per length λ): Deriving E(r) = $2k_e\lambda/r$

E-field associated with a solid sphere of charge. Total charge = Q, distributed uniformly. Radius a.

Outside sphere (r > a), $E(r) = k_e Q/r^2$

Inside sphere (r<a), $E(r) = k_e Qr/a^3$

(inside, enclosed charge increases with radius as r^3 , and area of the Gaussian surface increases with r^2 -- so E is proportional to r.)