Force on a square loop of current in a uniform B-field.

$$
F_{\text {top }}=0 \quad \theta=0 ; \sin \theta=0 ; \text { so } F_{B}=0
$$

$$
\begin{aligned}
& F_{\text {bottom }}=0 \\
& \left.F_{\text {left }}=1 \text { a } B \text { (out of page }\right) \\
& \left.F_{\text {right }}=I \text { a B (into page }\right)
\end{aligned}
$$

Assume loop is on a frictionless axis

What's the TORQUE on the current loop?

Fig. 22.19b in text is the view along the axis, from the bottom towards the top.

Reminder: torque $=\vec{F} \times \vec{r}=$ Frsin θ
$\tau=F_{\text {left }} b / 2+F_{\text {right }} b / 2=$
$(B a I+B a I) b / 2=B I A$
$A=$ area; $\theta=90^{\circ}$ here
Note direction of torque: clockwise

(b)

For 1 loop:
$\tau=\mathrm{BIA} \sin \theta$
$\tau_{\text {max }}=\mathrm{BIA}$

Magnetic Moment $\vec{\mu}=\mid \vec{A} N$

$\vec{\mu}$ always points perp. to the plane
of the loops (points along the normal)
$\tau=\mu B \sin \theta$

$\vec{\tau}=I \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$

- The product $\overrightarrow{I A}$ is defined as the magnetic dipole moment, $\vec{\mu}$ of the loop (for ANY loop shape)
- SI units: A m²
- Torque in terms of magnetic moment:

$$
\vec{\tau}=\vec{\mu} \times \overrightarrow{\mathbf{B}}
$$

For a coil with N turns of wire:

$$
\vec{\mu}=N I \vec{A}
$$

A coil consisting of 100 turns, each carrying 3A of current and having an area $0.2 \mathrm{~m}^{2}$, is oriented such that its normal makes a angle of 45° with a B-field of 0.5 T . Find the total torque on the coil. What's the direction of rotation?

$\tau=\operatorname{BIANsin} \theta=(0.5 \mathrm{~T})(3 \mathrm{~A})(100)\left(0.2 \mathrm{~m}^{2}\right) \sin 45^{\circ}=21.2 \mathrm{Nm}$
What would happen if the current were flowing in the opposite direction?

Same magnitude of τ, but rotation is now CW

torque acts to align plane of loop perpendicular to B field (align normal vector with B-field), as in \#3
(if released from rest in this position, it won't rotate)

As loop is rotating, what would happen if we switched the direction of current immediately after \#3?

The loop would continue to rotate clockwise!

Electric motors

-If direction of current is switched every time τ is about to change sign, then τ will never change sign!
-Loop will rotate nonstop: we have an electric motor (electrical energy converted to mechanical (rotational) energy)!
-Fans, blenders, power drills, etc.

- Use AC current (sign changes naturally), or if you only have DC current available....

How do you switch the sign of current every half cycle? Use a "commutator"

© 2006 Brooks/Cole - Thomson

22.7 \& 22.9 Biot-Savart Law / Ampere's Law

Context: Previous sections discussed what happens when moving charges are placed in a previouslyexisting B-fields: charged particles/current-carrying wires experience magnetic force; a loop of wire experiences a torque.

But what can GENERATE a magnetic field?

Magnetic Field of a long straight wire

In 1819, Oersted (Denmark) noticed that a magnet (compass needle) was deflected when current was drawn through a nearby wire. 1820: compasses in a horizontal plane:

Magnetic Field of a long straight wire

In 1819, Oersted (Denmark) noticed that a magnet (compass needle) was deflected when current was drawn through a nearby wire. 1820: compasses in a horizontal plane:

Direction of deflection indicated "right-hand rule \#2":

Magnetic Field of a long straight wire

B-field lines form concentric circles:

Notice that the iron filings are more strongly aligned closer to the wire

Magnitude of \vec{B} is the same everywhere along a given radius: $|\overrightarrow{\mathrm{B}}|$ depends only on r (\& physical constants)

Magnetic Field of a long straight wire

The magnitude of the field at a distance r from a wire carrying a current of I is

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

$$
\mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}
$$

μ_{o} is called the permeability of free space

Ampere's Law: A general method for deriving magnitude of B-field due to sources of current

1. Construct a closed path consisting of short segments, each of length $\Delta \ell$
2. $B=$ magnetic field
$\mathrm{B}_{\|}=$Component of B-field PARALLEL to $\Delta \ell$
Consider the product $\mathrm{B}_{\|}{ }^{*} \Delta \ell$
3. Sum of these products over the closed path $=\mu_{0}$ l

$\Sigma B_{| |} \Delta \ell=\mu_{0} I$

Take advantage of symmetry. When B-field lines are circles, we choose a circular Amperian loop. B is already || to the circle at all points on the circle
$\sum \mathrm{B}_{\| \mid} \Delta \ell=\mathrm{B}_{\|}{ }^{*}$ circumference
$=B_{\|}{ }^{*} 2 \pi r=\mu_{0} \mid$
Rearrange to get $B=\frac{\mu_{0} I}{2 \pi r}$

Example: A wire carrying 5A of current travels vertically into the page. At what distance r will the B-field equal the Earth's B-field (which points northward) at the surface, 0.5 Gauss?

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

$$
\begin{aligned}
& r=\mu_{0} I / 2 \pi \mathrm{~B} \\
& r=\left(4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A}\right)(5 \mathrm{~A}) /\left(2 \pi 0.5 \times 10^{-4} \mathrm{~T}\right) \\
& =\left(2 \times 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A}\right)(5 \mathrm{~A}) / 0.5 \times 10^{-4} \mathrm{~T} \\
& =2 \times 10^{-2} \mathrm{~m}=2 \mathrm{~cm} .
\end{aligned}
$$

Example: A wire carrying 5A of current travels vertically into the page. At what distance r will the B-field equal the Earth's B-field (which points northward) at the surface, 0.5 Gauss? If 4 compasses are placed N, S, E, W of the wire at this radius, how will each compasses' needle be deflected?

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

$$
\begin{aligned}
& r=\mu_{0} l / 2 \pi \mathrm{~B} \\
& \mathrm{r}=\left(4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A}\right)(5 \mathrm{~A}) /\left(2 \pi 0.5 \times 10^{-4} \mathrm{~T}\right) \\
& =\left(2 \times 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A}\right)(5 \mathrm{~A}) / 0.5 \times 10^{-4} \mathrm{~T} \\
& =2 \times 10^{-2} \mathrm{~m}=2 \mathrm{~cm} .
\end{aligned}
$$

Example: A wire carrying 5A of current travels vertically into the page. At what distance r will the B-field equal the Earth's B-field (which points northward) at the surface, 0.5 Gauss? If 4 compasses are placed N, S, E, W of the wire at this radius, how will each compasses' needle be deflected?

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

$$
\begin{aligned}
& r=\mu_{0} I / 2 \pi B \\
& r=\left(4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A}\right)(5 \mathrm{~A}) /\left(2 \pi 0.5 \times 10^{-4} \mathrm{~T}\right) \\
& =\left(2 \times 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A}\right)(5 \mathrm{~A}) / 0.5 \times 10^{-4} \mathrm{~T} \\
& =2 \times 10^{-2} \mathrm{~m}=2 \mathrm{~cm} .
\end{aligned}
$$

The E compass will spin freely ($\mathrm{F}_{\mathrm{B}_{\text {_Earth }}}=\mathrm{F}_{\mathrm{B}_{-} \text {wire }}$).
The W compass will really point north, as it feels $2 * F_{B_{-} \text {Earth }}$
The N compass will point NE
The S compass will point NW

A power line 20m above the ground carries a current of 1000 A from E to W . Find the magnitude and direction of the B -field due to the wire at the ground below the line, and compare it to the Earth's B-field. Repeat for a wire 10 m above ground.

At 20m:
$B=\mu_{0} I / 2 \pi r$
$=\left(4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A} * 1000 \mathrm{~A}\right) /(2 \pi 20 \mathrm{~m})$
$=1 \times 10^{-5} \mathrm{~T}-$ about a factor of $3-5$ smaller than the Earth's B field (0.3-0.5 Gauss).

At 10m: $\quad B(r=10)=2 \times B(r=20)=2 \times 10^{-5} \mathrm{~T}-$-still just smaller than the Earth's B-field

Direction of B-field when you're below the wire: south

B-field at the center of a current-loop:

$$
\mathrm{B}_{\mathrm{x}}=\frac{\mu_{0} l}{2 R}
$$

(a)

(b)

(c)

Example: A Co-axial cable

Inner conductor and outer conductor of radius $\mathrm{R}_{\text {out }}$ carrying currents in opposite directions.

What's B at $r>R_{\text {out }}$?
KEY: Remember superposition = vector addition: Total B-field from 2 sources $=$ sum of B-fields from each source!
$+I+-I=$ zero total current, so B-field $=0$.

Example: B(r), inside wire: Ex. 22.7, p. 749

Use Ampere's Law to derive that inside a wire with a uniform current distribution, $B(r)$ is proportional to r.

Recall the case of the electric field $\mathrm{E}(\mathrm{r})$ inside a wire with a uniform charge distribution: $\mathrm{E}(\mathrm{r})$ is also proportional to r .

Outside a long, straight wire, both E and B as proportional to $1 / \mathrm{r}$.

22.10: Stack of current loops = solenoid

When the loop are spaced together tightly enough, the B-field inside is strong and rather uniform, and B-field outside is essentially negligible.
Commonly used in electromagnets, devices used to convert electrical current to magnetic field.

B-field in the center of a solenoid

Use Ampere's Law; choose a closed loop as follows:

Only segment 1 contributes: $\mathrm{B}_{\|} \Delta \ell=0$ for other segments.
$B L=\mu_{0}(N I)$

$$
\mathrm{B}=\mu_{0} \mathrm{I}(\mathrm{~N} / \mathrm{L})=\mu_{0} \ln \quad(\mathrm{n}=\mathrm{N} / \mathrm{L})
$$

Example: An electromagnet consists of 100 turns of wire, and the length is 3.0 cm . The wire carries 20 Amps of current. What's the Bfield at the center of the magnet?
$B=\mu_{0} \mathrm{I}(\mathrm{N} / \mathrm{L})=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A} * 20 \mathrm{~A}$
(100/0.03m) $=0.084 \mathrm{~T}$

$\Sigma \mathrm{B}_{\|} \Delta \ell=\mathrm{B} 2 \pi \mathrm{r}$

Tokamak: used for fusion energy research
enclosed current on blue line $=\mu_{0} \mathrm{~N}$ I
B $=\mu_{0} \mathrm{NI} / 2 \pi \mathrm{r}$
B-field higher towards inner radius (not perfectly uniform), but uniform along each radius

22.11: Magnetism in Matter / Magnetic Domains

Magnetic materials owe their properties to magnetic dipole moments of electrons in atoms

Classical model for electrons in atoms:
1.Orbital motion of electron: like a loop current (but B-field produced by 1 electron can be cancelled out by an oppositely revolving electron in the same atom)
2. "spin" of individual electrons produces much stronger Bfield: each electron itself acts like a magnetic dipole

Magnetic Domains

Magnetic domains ($10^{-4}-10^{-1} \mathrm{~cm}$): Each domain has a substantial fraction of atoms with magnetic moments coupled. They're separated by domain boundaries.

Ferromagnetic materials ($\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$): have these domains. Spins are randomly oriented, but when an external \vec{B} is applied, domains tend to align with magnetic field; domain boundaries adjust accordingly.

Result: material produces its own internal \vec{B}
$\left.\vec{B}_{\text {net }}=\vec{B}_{\text {external }}+\vec{B}_{\text {internal }}\right)$
Re-cap:
Soft magnetic materials (e.g. Fe): Easily magnetized in presence of external B, but doesn't retain magnetization for long. Used as cores for electromagnets.

When external B is turned off, thermal agitation returns dipoles to random orientations

Hard magnetic materials (e.g. metal alloys: Alnico (Aluminum, Nickel, Cobalt)): Harder to magnetize (requires higher $\vec{B}_{\text {external }}$) but retains the magnetization for a long time. Used as permanent magnets.

