Aurora

Charged particles from solar wind or solar flares get caught in B-field lines in Earth's B-field, funneled to the poles

Appears as circle surrounding magnetic pole (NASA's Polar Sat.)

Aurora-related youtube vids (copy/paste into your browser):
http://www.youtube.com/watch?v=_Ehb38zzpgo
http://www.youtube.com/watch?v=DUzT4skIUWc (time-lapse view from the ground; with timestamps)
http://www.youtube.com/watch?v=7AmyfuJDMIY (featuring Saturn's auroras, observed with Cassini; however, there's an error in the animation -- it shows aurora around Earth's geographic, not magnetic, poles; warning: obnoxious ads)

Charge/Mass ratio of particles

J.J. Thomson, 1897
e-'s accelerated in cathode, pass through regions of perp. E \& B fields. Deflection measured.

(a)

Mass Spectrometers

Example: A mass spectrometer has a velocity selector at its inlet such that only $q=+1$ ions with $v=1 \times 10^{5} \mathrm{~m} / \mathrm{s}$ are permitted inside the mass spectrometer, where the B -field is 0.2 T . A mixture of gas containing $\mathrm{CO}_{2}{ }^{+}$is injected. But some of the CO_{2} contains Carbon14. What radii are ${ }^{12} \mathrm{CO}_{2}{ }^{+}$and ${ }^{14} \mathrm{CO}_{2}{ }^{+}$rotated through, and what is their separation on the photographic plate?

Reminder: mass is for whole molecule.
F_{B} works on the singular positive charge only.

Assume $m_{p}=m_{n}$ for simplicity; ignore masses of electrons sicne they're 1800x less massive than protons/neutrons

Mass $\left({ }^{12} \mathrm{CO}_{2}^{+}\right)=(12+16+16)^{*} 1.67 \times 10^{-27} \mathrm{~kg}=44 * 1.67 \times 10^{-27} \mathrm{~kg}=$ $73.5 \times 10^{-27} \mathrm{~kg}$
Mass $\left({ }^{14} \mathrm{CO}_{2}{ }^{+}\right)=(14+16+16)^{*} 1.67 \times 10^{-27} \mathrm{~kg}=46 * 1.67 \times 10^{-27} \mathrm{~kg}=$ $76.8 \times 10^{-27} \mathrm{~kg}$

Reminder: mass is for whole molecule. F_{B} works on the singular positive charge only.

$$
\begin{aligned}
& \mathrm{r}\left({ }^{12} \mathrm{CO}_{2}^{+}\right)=\mathrm{mv} / \mathrm{qB}=\left(73.5 \times 10^{-27} \mathrm{~kg} * 10^{5} \mathrm{~m} / \mathrm{s}\right) /\left(1.6 \times 10^{-19} \mathrm{C} * 0.2 \mathrm{~T}\right)= \\
& 23.0 \mathrm{~cm}^{*} \\
& \mathrm{r}\left({ }^{14} \mathrm{CO}_{2}^{+}\right)=\mathrm{mv} / \mathrm{qB}=\left(76.8 \times 10^{-27} \mathrm{~kg} * 10^{5} \mathrm{~m} / \mathrm{s}\right) /\left(1.6 \times 10^{-19} \mathrm{C} * 0.2 \mathrm{~T}\right)= \\
& 24.0 \mathrm{~cm} \\
& \text { The diameters of the circles traced out will be } 46.0 \text { and } 48.0 \mathrm{~cm} \text {, } \\
& \text { respectively. }
\end{aligned}
$$

The separation on the photographic plate will be 2.0 cm .

Reminder: mass is for whole molecule. F_{B} works on the singular positive charge only.

The Cyclotron

Used to accelerate charged particles to very high speeds, bombard other particles, induce nuclear reactions

22.5: Force on a Current-carrying Conductor

Total force $=$ Force on each charge $\times \#$ of charges in the wire

$$
\begin{aligned}
& \vec{F}_{B}=\left(q \vec{v}_{\mathrm{vr}} \times \vec{B}\right)(\mathrm{nA} \ell) \\
& \mathrm{F}_{\mathrm{B}}=\left(\mathrm{q} \mathrm{v}_{\mathrm{dr}} B \sin \theta\right)(\mathrm{nA} \ell) \quad(\mathrm{A} \times \ell=\text { vol.; } n=\text { charges } / \mathrm{vol})
\end{aligned}
$$

But recall that $\mathrm{I}=\Delta \mathrm{Q} / \Delta \mathrm{T}$
and $\Delta \mathrm{Q} / \Delta \mathrm{T}=(\mathrm{q}$ of each charge $) \times(\#$ of charges per second $)$
\# of charges per second $=A n v_{\text {dr }}$

$$
\left(\mathrm{m}^{2}\right)\left(\mathrm{m}^{-3}\right)(\mathrm{m} / \mathrm{s})
$$

Sol $=n A v_{d r} q$
$\vec{F}_{B}=\mid \vec{l} \times \vec{B}$
$\mathrm{F}_{\mathrm{B}}=\mathrm{BI} \ell \sin (\theta) \quad$ or $\quad \mathrm{F}_{\mathrm{B}} / \ell=\mathrm{BI} \sin (\theta)$

More general form: Force on a Wire, Arbitrary Shape

- Consider a small segment of the wire, $d \overrightarrow{\mathbf{s}}$
- The force exerted on this segment is

$$
d \overrightarrow{\mathbf{F}}_{B}=I d \overrightarrow{\mathbf{s}} \times \overrightarrow{\mathbf{B}}
$$

- The total force is

$$
\overrightarrow{\mathbf{F}}_{B}=I \int_{a}^{b} d \overrightarrow{\mathbf{s}} \times \overrightarrow{\mathbf{B}}
$$

© 2006 Brooks/Cole - Thomson
Reminder: Direction of deflection is given by right hand rule:

I = thumb
$B=$ fingers
$F_{B}=$ out of your palm

Example: Your magnet produces a B-field with strength 0.01 T in the plane of the page as shown. A wire carries 1 Amp from left to right, such that $\theta=30^{\circ}$. What's the force per unit length (and its direction)?
$\mathrm{F}_{\mathrm{B}} / \ell=\mathrm{BI} \sin 30^{\circ}=0.01 \mathrm{~T} \times 1 \mathrm{~A} \times 0.5=0.005$
N / m (out of page)
So it's not much.
Suppose the current is 6 Amps and the B-field is 3 T. $F_{B} / \ell=9 \mathrm{~N} / \mathrm{m} \quad$ (which is slightly more substantial)

Consider a power transmission line carrying 100 Amps from W to E. What's the total force on 100 m of wire due to the Earth's magnetic field (assume a North component only)?
In which direction is the wire deflected (assume charge carriers are $e^{-1} \mathrm{~s}$)?
Reminder: the Earth's B-field is 0.5 Gauss $=0.5 \times 10^{-4} \mathrm{~T}$
$\mathrm{F}_{\mathrm{B}}=\mathrm{BI} \ell \sin \theta$
$=\left(0.5 \times 10^{-4} \mathrm{~T}\right)(100 \mathrm{~A})(100 \mathrm{~m})=0.5 \mathrm{~N}$.
So, again, it's not much.
Direction of deflection $=$ downward

Force on a square loop of current in a uniform B-field.

$$
F_{\text {top }}=0 \quad \theta=0 ; \sin \theta=0 ; \text { so } F_{B}=0
$$

$$
\begin{aligned}
& F_{\text {bottom }}=0 \\
& \left.F_{\text {left }}=I \text { a } B \text { (out of page }\right) \\
& \left.F_{\text {right }}=I \text { a B (into page }\right)
\end{aligned}
$$

Assume loop is on a frictionless axis

What's the TORQUE on the current loop?

Fig. 22.19b in text is the view along the axis, from the bottom towards the top.

Reminder: torque $=\vec{F} \times \vec{r}=$ Frsin θ
$\tau=F_{\text {left }} a / 2+F_{\text {right }} a / 2=$ $(B b I+B b I) a / 2=B I A$
$A=$ area; $\theta=90^{\circ}$ here

Note direction of torque: clockwise

(b)

For 1 loop:
$\tau=\mathrm{BIA} \sin \theta$
$\tau_{\text {max }}=\mathrm{BIA}$

For N turns: Total current $=\mathrm{NI}$
$\tau=\mathrm{BIAN} \sin \theta$

Magnetic Moment $\vec{\mu}=\operatorname{IAN}$

$\vec{\mu}$ always points perp. to the plane of the loops (points along the normal)
$\tau=\mu B \sin \theta$

$\vec{\tau}=I \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$

- The product $\overrightarrow{I A}$ is defined as the magnetic dipole moment, $\vec{\mu}$ of the loop (for ANY loop shape)
- SI units: A m²
- Torque in terms of magnetic moment:

$$
\vec{\tau}=\vec{\mu} \times \overrightarrow{\mathbf{B}}
$$

For a coil with N turns of wire:
$\vec{\mu}=$ NI \vec{A}

A coil consisting of 100 turns, each carrying 3A of current and having an area $0.2 \mathrm{~m}^{2}$, is oriented such that its normal makes a angle of 45° with a B-field of 0.5 T . Find the total torque on the coil. What's the direction of rotation?

$\tau=\operatorname{BIANsin} \theta=(0.5 \mathrm{~T})(3 \mathrm{~A})(100)\left(0.2 \mathrm{~m}^{2}\right) \sin 45^{\circ}=21.2 \mathrm{Nm}$
What would happen if the current were flowing in the opposite direction?

Same magnitude of τ, but rotation is now CW

torque acts to align plane of loop perpendicular to B field (align normal vector with B-field), as in \#3
(if released from rest in this position, it won't rotate)

As loop is rotating, what would happen if we switched the direction of current immediately after \#3?

The loop would continue to rotate clockwise!

Electric motors

-If direction of current is switched every time τ is about to change sign, then τ will never change sign!
-Loop will rotate nonstop: we have an electric motor (electrical energy converted to mechanical (rotational) energy)!
-Fans, blenders, power drills, etc.

- Use AC current (sign changes naturally), or if you only have DC current available....

How do you switch the sign of current every half cycle? Use a "commutator"

© 2006 Brooks/Cole - Thomson

