Aurora

Charged particles from solar wind or solar flares get caught in B-field lines in Earth's B-field, funneled to the poles

Appears as circle surrounding magnetic pole (NASA's *Polar* Sat.)

gsfc.nasa.gov

apod.nasa.gov

Aurora-related youtube vids (copy/paste into your browser):

http://www.youtube.com/watch?v=_Ehb38zzpgo

http://www.youtube.com/watch?v=DUzT4skIUWc (time-lapse view from the ground; with timestamps)

http://www.youtube.com/watch?v=7AmyfuJDMlY (featuring Saturn's auroras, observed with Cassini; however, there's an error in the animation -- it shows aurora around Earth's geographic, not magnetic, poles; warning: obnoxious ads)

Charge/Mass ratio of particles

J.J. Thomson, 1897

e-'s accelerated in cathode, pass through regions of perp. E & B fields. Deflection measured.

© 2006 Brooks/Cole - Thomson

Example: A mass spectrometer has a velocity selector at its inlet such that only q=+1 ions with v = 1×10^5 m/s are permitted inside the mass spectrometer, where the B-field is 0.2 T. A mixture of gas containing CO₂⁺ is injected. But some of the CO₂ contains Carbon-14. What radii are 12 CO₂⁺ and 14 CO₂⁺ rotated through, and what is their separation on the photographic plate?

Reminder: mass is for whole molecule. F_B works on the singular positive charge only. Assume $m_p = m_n$ for simplicity; ignore masses of electrons sicne they're 1800x less massive than protons/neutrons

Mass $({}^{12}CO_2^{+}) = (12+16+16)*1.67 \times 10^{-27}kg = 44 * 1.67 \times 10^{-27}kg = 73.5 \times 10^{-27} kg$ Mass $({}^{14}CO_2^{+}) = (14+16+16)*1.67 \times 10^{-27}kg = 46 * 1.67 \times 10^{-27}kg = 76.8 \times 10^{-27} kg$

Reminder: mass is for whole molecule. F_B works on the singular positive charge only. $r({}^{12}CO_2{}^+) = mv/qB = (73.5 \times 10^{-27} \text{ kg} * 10^5 \text{ m/s}) / (1.6 \times 10^{-19} \text{C} * 0.2\text{T}) = 23.0 \text{ cm}$ $r({}^{14}CO_2{}^+) = mv/qB = (76.8 \times 10^{-27} \text{ kg} * 10^5 \text{ m/s}) / (1.6 \times 10^{-19} \text{C} * 0.2\text{T}) = 24.0 \text{ cm}$

The diameters of the circles traced out will be 46.0 and 48.0 cm, respectively.

The separation on the photographic plate will be 2.0 cm.

Reminder: mass is for whole molecule. F_B works on the singular positive charge only.

The Cyclotron

Used to accelerate charged particles to very high speeds, bombard other particles, induce nuclear reactions

22.5: Force on a Current-carrying Conductor

Total force = Force on each charge \times # of charges in the wire

$$\vec{F}_{B} = (q \vec{v}_{dr} \times \vec{B}) (n \land \ell)$$

$$F_{B} = (q v_{dr} \otimes \sin\theta) (n \land \ell) \qquad (A \times \ell = vol.; n = charges/vol)$$

But recall that I = $\Delta Q/\Delta T$ and $\Delta Q/\Delta T$ = (q of each charge) × (# of charges per second)

of charges per second = A n v_{dr} (m²) (m⁻³) (m/s)

So I = n A v_{dr} q $\vec{F}_B = I \vec{\ell} \times \vec{B}$ $F_B = B I \ell \sin(\theta)$ or $F_B / \ell = B I \sin(\theta)$

More general form: Force on a Wire, Arbitrary Shape

- Consider a small segment of the wire,
 ds
- The force exerted on this segment is $d\vec{F}_B = I d\vec{s} \times \vec{B}$
- The total force is $\vec{\mathbf{F}}_{B} = I \int_{a}^{b} d\vec{\mathbf{s}} \times \vec{\mathbf{B}}$

© 2006 Brooks/Cole - Thomson

Reminder: Direction of deflection is given by right hand rule:

- I = thumb
- B = fingers
- F_B = out of your palm

Example: Your magnet produces a B-field with strength 0.01 T in the plane of the page as shown. A wire carries 1 Amp from left to right, such that $\theta = 30^{\circ}$. What's the force per unit length (and its direction)?

 $F_B / \ell = B I \sin 30^\circ = 0.01T \times 1A \times 0.5 = 0.005$ N/m (out of page)

So it's not much.

Suppose the current is 6 Amps and the B-field is 3 T. $F_B / \ell = 9 \text{ N/m}$ (which is slightly more substantial) Consider a power transmission line carrying 100 Amps from W to E. What's the total force on 100m of wire due to the Earth's magnetic field (assume a North component only)?

In which direction is the wire deflected (assume charge carriers are e⁻'s)?

Reminder: the Earth's B-field is 0.5 Gauss = 0.5×10^{-4} T

 $F_B = B I \ell \sin\theta$ = (0.5 ×10⁻⁴ T)(100A)(100m) = 0.5 N.

So, again, it's not much.

Direction of deflection = downward

Force on a square loop of current in a uniform B-field.

Assume loop is on a frictionless axis

What's the TORQUE on the current loop?

Fig. 22.19b in text is the view along the axis, from the bottom towards the top.

Reminder: torque = $\vec{F} \times \vec{r}$ = F r sin θ

 $\tau = F_{left} a/2 + F_{right} a/2 =$ (B b I + B b I) a/2 = B I A

A = area; θ =90° here

Note direction of torque: clockwise

For 1 loop: $\tau = BIA \sin\theta$ $\tau_{max} = BIA$

For N turns: Total current = NI τ = BIAN sin θ

Magnetic Moment $\vec{\mu}$ = IAN

 $\vec{\mu}$ always points perp. to the plane of the loops (points along the normal)

 τ = μ B sin θ

$\vec{\tau} = \textit{/} \vec{\textbf{A}} \times \vec{\textbf{B}}$

- The product IA is defined as the *magnetic dipole moment,* $\vec{\mu}$ of the loop (for ANY loop shape)
- SI units: A m²
- Torque in terms of magnetic moment:

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

For a coil with N turns of wire: $\vec{\mu} = NI\vec{A}$

A coil consisting of 100 turns, each carrying 3A of current and having an area 0.2 m^2 , is oriented such that its normal makes a angle of 45° with a B-field of 0.5T. Find the total torque on the coil. What's the direction of rotation?

 $\tau = BIANsin\theta = (0.5T)(3A)(100)(0.2m^2)sin45^\circ = 21.2 \text{ Nm}$

What would happen if the current were flowing in the opposite direction?

Same magnitude of τ , but rotation is now CW

torque acts to align plane of loop perpendicular to Bfield (align normal vector with B-field), as in #3

(if released from rest in this position, it won't rotate)

As loop is rotating, what would happen if we switched the direction of current immediately after #3?

The loop would continue to rotate clockwise!

Electric motors

•If direction of current is switched every time τ is about to change sign, then τ will never change sign!

- •Loop will rotate nonstop: we have an electric motor (electrical energy converted to mechanical (rotational) energy)!
- •Fans, blenders, power drills, etc.
- •Use AC current (sign changes naturally), or if you only have DC current available....

How do you switch the sign of current every half cycle? Use a "commutator"

@ 2006 Brooks/Cole - Thomson