The N pole of a magnet got its name because it points roughly towards Earth's north pole. It points towards NE Canada, since that's the Earth's South magnetic pole.

Earth's B-field is actually upside down, and the dipole axis is offset slightly $\left(\sim 11^{\circ}\right)$ from Earth's rotation axis.

Earth's magnetic field has a vertical component at the surface:
Points upwards in southern hemisphere.
Points downwards in northern hemisphere.

Parallel to surface at magnetic equator.

Source: Current/ convection in hot Fe liquid core

Units of B-fields

Tesla [SI] and Gauss [cgs]
1 Tesla $=10^{4}$ Gauss. $T=\frac{\mathrm{Wb}}{\mathrm{m}^{2}}=\frac{\mathrm{N}}{\mathrm{C} \cdot(\mathrm{m} / \mathrm{s})}=\frac{\mathrm{N}}{\mathrm{A} \cdot \mathrm{m}}$
Typical B-field strengths:
Earth's B-field at surface: $0.5 \times 10^{-4} \mathrm{~T}=0.5 \mathrm{G}$
Refrigerator magnet: ~0.005 T
Bar magnets: 0.01 T
MRI machine: 1-5 T
Laboratory magnet: 5 T
Superconducting magnet: 20-30 T

Magnetic field produces a force on a moving charge

A charge q moving with velocity v in a magnetic field B experiences a force \vec{F} with magnitude:
$F=q \vee B \sin (\theta)$
θ is the smallest angle between the vectors $\vec{V} \& \vec{B}$

\vec{F} is perpendicular to BOTH \vec{v} and \vec{B}

$F=q v B \sin (\theta)$

Magnitude of Force depends on both v and B :
If $\mathrm{v}=0$ or $\mathrm{B}=0$, then $\mathrm{F}=0$
Force depends on angle θ :
If $\vec{B} \| \overrightarrow{\mathrm{V}}, \mathrm{F}=0$
Force is max. when \vec{v} and \vec{B} are perpendicular

Because \vec{F} is perp. to \vec{v}, magnetic forces cannot change a particle's speed, just its direction of motion.

Right-hand rule (my version)

Thumb = v (e.g., hitchhiking)
Fingers = B (like my fingers are bar magnets) Out of Palm = Magnetic Force

Example: A proton is moving at $1 \times 10^{4} \mathrm{~m} / \mathrm{s}$ from left to right in a magnetic field of 0.4 T that's in the upward direction (in the plane of the page). Find the magnitude of the force vector. Find the direction. What would the force be if the particle was an e^{-}?
$\mathrm{F}=\mathrm{B}^{*} \mathrm{q}{ }^{*} \mathrm{v}^{*} \sin \theta=0.4 \mathrm{~T} * 1.6 \times 10^{-19} \mathrm{C} * 10^{4} \mathrm{~m} / \mathrm{s}^{*}$ $\sin 90^{\circ}=6.4 \times 10^{-16} \mathrm{~N}$

Direction of force: out of the page towards you.

For e^{-}: Magnitude of force is same, but in the opposite direction. Calculate direction of force same as for proton, then reverse the direction!

F_{B} vs F_{E}

F_{E} is always parallel or anti-parallel to E -field;
F_{B} is always perpendicular to B-field
F_{E} acts on a particle independently of the particle's veloc;
F_{B} depends on velocity
F_{E} does work in displacing a charged particle
F_{B} does no work (particle's kinetic energy unchanged)

B-field notation

out of page:

into page:

$$
\begin{aligned}
& \times \times \times \times \times \times \times \times \\
& \times \times \times \times \times \times \times \times \\
& \times \times \times \times \times \times \times \times \\
& \times \times \times \times \times \times \times \times \\
& \times \times \times \times \times \times \times \times
\end{aligned}
$$

think of the points/tails of arrows

22.3: Motion of a charged particle in a magnetic field

\vec{F} is in a plane perpendicular to \vec{B}. Particle's path remains in plane perpendicular to \vec{B}.

$$
\begin{gathered}
F=q v B=\frac{m v^{2}}{r} \\
r=\frac{m v}{q B}
\end{gathered}
$$

A proton with velocity $\mathrm{v}=1 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is in a uniform B-field of 0.2 T . Find r :
$\mathrm{r}=\mathrm{mV} / \mathrm{qB}=$
$\left(1.67 \times 10^{-27} \mathrm{~kg} * 1 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) /\left(1.6 \times 10^{-19} \mathrm{C} * 0.2 \mathrm{~T}\right)=$ $0.052 \mathrm{~m}=5.2 \mathrm{~cm}$

Cyclotron Frequency

Angular Speed $\quad \omega=\frac{v}{r}=\frac{q B}{m}$
a.k.a. cyclotron frequency. Units $=$ radians/sec.

Freq f in cycles $/ \mathrm{sec}=\mathrm{v} /(2 \pi \mathrm{r})=\omega / 2 \pi$
Time to complete 1 cycle

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega}=\frac{2 \pi m}{q B}
$$

When \vec{B} and \vec{v} are not exactly perpendicular:

Motion || to B-field is unaffected. Motion perp. to B -field is circular.

So a charge will follow a HELICAL path around field lines (helix axis || to B-field lines).

Projection of motion onto the $y-z$ plane is still a circle. Cyclotron frequency equations refer only to motion in the $\mathrm{y}-\mathrm{z}$ plane.

Component of motion along x -axis
 unaffected (accel along x-axis=0)

Example:

Solar Prominences: Charged particles in sun's corona move in helices along B-field lines, emit light \& map out those B-field lines

Solar prominence viewed by SOHO:

Solar prominence viewed by TRACE:

Aurora

Charged particles from solar wind or solar flares get caught in B-field lines in Earth's B-field, funneled to the poles

Appears as circle surrounding magnetic pole (NASA's Polar Sat.)

Example 22.3

Measure B from deflection, velocity of electrons

22.4 Applications involving charged particles moving in a Bfield

Velocity Selector

Perpendicular E and B fields can be used to select charged particles having a specific velocity

$F_{B}=e v B$ (downward for e^{-})
$F_{E}=e E$ (upward for e^{-})
When $F_{B}=F_{E}$, forces cancel: evB=eE

$\mathrm{v}=\mathrm{E} / \mathrm{B}$: electron with this velocity will be undeflected

$E:$ downward
B : into page

Lorentz Force

- In many applications, the charged particle will move in the presence of both magnetic and electric fields
- In that case, the total force is the sum of the forces due to the individual fields
- In general: $\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}+q \overrightarrow{\mathbf{V}} \times \overrightarrow{\mathbf{B}}$
- This force is called the Lorenz force
- It is the vector sum of the electric force and the magnetic force

Velocity Selector

Example: A velocity selector has perpendicular electric and magnetic field of $E=1000 \mathrm{~V} / \mathrm{m}$ and $B=0.3 \mathrm{~T}$. Find the velocity of the electrons that pass through undeflected. What would happen to faster electrons? Slower?
$\mathrm{v}=\mathrm{E} / \mathrm{B}=$
1000V/m / 0.3 T =
$3.3 \times 10^{4} \mathrm{~m} / \mathrm{s}$

$E:$ downward
B : into page

Velocity Selector

For electrons traveling faster than this velocity, the magnitude of the magnetic force is larger than that of the electric force (because F_{B} is proportional to v); $F_{E}<F_{B}$. Since F_{B} points downward, the too-fast electrons will be directed downward.

For electrons traveling too slowly, the magnetic force is insufficient to counter balance the upward electric force; $F_{E}>$ F_{B}. These electrons travel upwards and do not make it out the right side.

$E:$ downward
B : into page

Mass Spectrometers

Example: A mass spectrometer has a velocity selector at its inlet such that only $\mathrm{q}=+1$ ions with $\mathrm{v}=1 \times 10^{5} \mathrm{~m} / \mathrm{s}$ are permitted inside the mass spectrometer, where the B -field is 0.2 T . A mixture of gas containing $\mathrm{CO}_{2}{ }^{+}$is injected. But some of the CO_{2} contains Carbon14. What radii are ${ }^{12} \mathrm{CO}_{2}{ }^{+}$and ${ }^{14} \mathrm{CO}_{2}{ }^{+}$rotated through, and what is their separation on the photographic plate?

Reminder: mass is for whole molecule.
F_{B} works on the singular positive charge only.

Assume $m_{p}=m_{n}$ for simplicity; ignore masses of electrons sicne they're 1800x less massive than protons/neutrons

Mass $\left({ }^{12} \mathrm{CO}_{2}^{+}\right)=(12+16+16) * 1.67 \times 10^{-27} \mathrm{~kg}=44 * 1.67 \times 10^{-27} \mathrm{~kg}=$ $73.5 \times 10^{-27} \mathrm{~kg}$
Mass $\left({ }^{14} \mathrm{CO}_{2}{ }^{+}\right)=(14+16+16) * 1.67 \times 10^{-27} \mathrm{~kg}=46 * 1.67 \times 10^{-27} \mathrm{~kg}=$ $76.8 \times 10^{-27} \mathrm{~kg}$

Reminder: mass is for whole molecule. F_{B} works on the singular positive charge only.

$$
\begin{aligned}
& \mathrm{r}\left({ }^{12} \mathrm{CO}_{2}^{+}\right)=\mathrm{mv} / \mathrm{qB}=\left(73.5 \times 10^{-27} \mathrm{~kg} * 10^{5} \mathrm{~m} / \mathrm{s}\right) /\left(1.6 \times 10^{-19} \mathrm{C} * 0.2 \mathrm{~T}\right)= \\
& 23.0 \mathrm{~cm}^{*} \\
& \mathrm{r}\left({ }^{14} \mathrm{CO}_{2}^{+}\right)=\mathrm{mv} / \mathrm{qB}=\left(76.8 \times 10^{-27} \mathrm{~kg} * 10^{5} \mathrm{~m} / \mathrm{s}\right) /\left(1.6 \times 10^{-19} \mathrm{C} * 0.2 \mathrm{~T}\right)= \\
& 24.0 \mathrm{~cm} \\
& \text { The diameters of the circles traced out will be } 46.0 \text { and } 48.0 \mathrm{~cm} \text {, } \\
& \text { respectively. }
\end{aligned}
$$

The separation on the photographic plate will be 2.0 cm .

Reminder: mass is for whole molecule.
F_{B} works on the singular positive charge only.

Charge/Mass ratio of particles

J.J. Thomson, 1897
e-'s accelerated in cathode, pass through regions of perp. E \& B fields. Deflection measured.

(a)

The Cyclotron

Used to accelerate charged particles to very high speeds, bombard other particles, induce nuclear reactions

