You want to make a flashing circuit that charges a capacitor through a resistor up to a voltage at which a neon bulb discharges once every 5.0 sec. If you have a 10 microfarad capacitor what resistor do you need?

Solution: Have the flash point be equal to 0.63 $\Delta V_{C,max}$

 $\tau = RC \rightarrow R = \tau/C = 5s/10^{-5}F = 5 \times 10^{5} Ohms$

This is a very big resistance, but 5 seconds is pretty long in "circuit" time

Discharging an RC circuit:

© 2006 Brooks/Cole - Thomso

First, disconnect from EMF source.

Q is at maximum value, $Q_{max} = C\epsilon$ ΔV_{C} is at maximum value of $\Delta V_{C,max} = \epsilon$ Discharging an RC circuit:

Then close switch at time t=0.

Circuit now has only R and C.

Current will flow from the capacitor, clockwise.

Note: I made a mistake in lecture: ΔV_C should be positive for travel in clockwise direction, with current

From loop rule: $+\Delta V_{\rm C} - \Delta V_{\rm R} = 0$

Discharging an RC circuit:

So I = $\Delta V_R/R$ will jump from 0 to ϵ/R at t=0, then exponentially decay

	t=0		$t \rightarrow \infty$
ΔV_{C}	3	$\epsilon(e^{-(t/\tau)})$	0
Q	$Q_{max} = C \epsilon$	$C\epsilon(e^{-(t/\tau)})$	0
ΔV_R	8	$\epsilon(e^{-(t/\tau)})$	0
Ι	ε/R	$\epsilon/R(e^{-(t/\tau)})$	0

Think about why increasing R and/or C would increase the time to discharge the capacitor:

 τ will increase with C because there is more stored charge in the capacitor to unload. τ increases with R because the flow of current is lower.

Given a 12 μ F capacitor being discharged through a 2000 Ω resistor. How long does it take for the voltage drop across the resistor (V) to reach 5% of the initial voltage (V_{max})?

Solution: First, calculate τ : τ =2000 Ω * 12x10⁻⁶ F = 24 ms

Then: $V = V_{max} \exp(-t/\tau)$

V / V_{max} = $exp(-t/\tau)$

Take natural log (ln) of both sides: $ln(V/V_0) = -t/\tau$

Solve for t: $t = -\tau^* \ln(V/V_{max}) = -0.024 \text{ s} (\ln(0.05)) = 0.072 \text{ sec}$

(After 1 time constant, I, ΔV_R , ΔV_C , etc. are 37% of their initial values) (After 3 time constants, I, ΔV_R , ΔV_C , etc. are 5% of their initial values)

Ex. 21.10: Charging a defibrillator

J

The RC circuit in a defibrillator has C = 32μ F, R=47 k Ω . The circuitry in the charging system applies 5000 V to the RC circuit to charge it.

A: Find τ , Qmax, I_{max}, q(t) and I(t).

B: Find the energy in the capacitor when it's fully charged.

Answers:

A:
$$\tau = RC = (47 \times 10^{3} \Omega)(32 \times 10^{-6} F) = 1.50 \text{ sec}$$

 $Q_{max} = C\epsilon = (32 \times 10^{-6} F)(5000V) = 0.160 C$
 $I_{max} = \epsilon/R = (5000V)/(47 \times 10^{3} \Omega) = 0.106 A$
 $Q(t) = Q_{max}(1 - e^{-t/\tau}) = (0.160C)(1 - e^{-t/1.5 \text{sec}})$
 $I(t) = I_{max}(e^{-t/\tau}) = (0.106A)(e^{-t/1.5 \text{sec}})$
B: $U = \frac{1}{2}C(\Delta V)^{2} = \frac{1}{2}(32 \times 10^{-6} F)(5000V)^{2} = 400$

Energy stored in the capacitor

Discharging a capacitor:

 $U = Q^2/2C = Q_{max}^2/2C e^{(-2t/RC)}$

In-lecture demo: Charging and discharging an RC circuit

Brightness of light bulb (tracking current) exponentially decays both when charging & discharging the capacitor bank

21.10: The atmosphere as a conductor: lightning/sparks

Air is normally a good insulator, but it's possible for current to exist in air (lightning, sparks)

When there's a strong electric field, the effective resistivity of the air drops....

Noaa.gov

School-for-champions.com

- 1. Molecules get ionized (e.g., by cosmic rays)
- 2. If a weak (strong) E-field is present, they accelerate away from each other slowly (rapidly)
- 3. For a WEAK E-field. The ions gently collide with other ions, recombine.
- 4. For a STRONG E-field: Ions collide violently. Electrons with sufficient kinetic energy can ionize other molecules.
- 5. More freed electrons become accelerated
- 6. Rapid increase in number of free electrons -- conductivity of the air is increased -- a current can be established

Lightning: Stepped leader: 200-300 A

Then, once connection between stepped leader and return stroke is made: Current rises to ~50000 A (typ. value).

Typical ΔV between cloud and ground: ~10⁵⁻⁷ V

Typical POWER delivered in a lightning strike: many billions of Watts

Eiu.edu

Ch. 22: Magnetism

Bar magnets. Planetary magnetic fields. Forces on moving charges. Electrical motors

(electrical energy →mechanical energy) Generators (mechanical → electrical energy) Magnetic data storage: magnetic tapes, computer drives MRI (magnetic resonance imaging) A magnet has two poles (magnetic dipole) North–South

stable

unstable

No magnetic monopoles

No *magnetic monopoles* are found (i.e. there is no magnetic equivalent of charge).

If you cut a magnetic bar in two....

You get two smaller magnets:

You do not get separate N & S magnetic charges -- no matter how small the magnet. This continues down to the scale of a single atom!

Magnetic Field Lines

B-field lines flow from N to S pole.

Can be traced out using a compass

When placed in external magnetic fields, magnetic dipoles (e.g., compass needle) orient themselves parallel to B-field lines.

Vector \vec{B} Direction is given by the direction a *north pole* of a compass needle points in that location

Magnetic Field Lines

© 2006 Brooks/Cole - Thomson

Can also be traced out with Fe filings

In-lecture demo: The 3-D magnetic field viewer

Soft/Hard Magnetic materials

Soft magnetic materials (e.g., Fe): Easily magnetized, but can lose magnetization easily

Hard materials more difficult to magnetize, but retain magnetism for a long time ("permanent magnet") Ex.: metal alloys such as Alnico (Aluminum, Nickel, Cobalt)

Ferromagnetic materials: materials which can become magnetized and can be attracted to other magnets

Magna-doodle

Close-up of the honeycombed structure of the display

The tip of the magnetic pen

Ferromagnetic fluids

"Leaping ferrofluid demonstration:" http://www.youtube.com/watch?v=Rg9xSLdXKXk

Sachiko Kodama, Yasushi Miyajima "Morpho Towers -- Two Stand": http://www.youtube.com/watch?v=me5Zzm2TXh4 (see also sachikokodama.com)

Ferrofluid: how it works: http://www.youtube.com/watch?v=PvtUt02zVAs

Ferrofluid on the track of a Magnetized Meatgrinder http://www.youtube.com/watch?v=OE2pB1pyZN0 The N pole of a magnet got its name because it points roughly towards Earth's *north* pole. It points towards NE Canada, since that's the Earth's South magnetic pole.

Earth's B-field is actually upside down, and the dipole axis is offset slightly (~11°) from Earth's rotation axis.

Earth's magnetic field has a vertical component at the surface: Points upwards in southern hemisphere. Points downwards in northern hemisphere.

Parallel to surface at magnetic equator.

Source: Current/ convection in hot Fe liquid core