You want to make a flashing circuit that charges a capacitor through a resistor up to a voltage at which a neon bulb discharges once every 5.0 sec . If you have a 10 microfarad capacitor what resistor do you need?


Solution: Have the flash point be equal to $0.63 \Delta \mathrm{~V}_{\mathrm{C} \text {, max }}$
$\tau=R C \rightarrow R=\tau=\frac{\text { time }}{} / \mathrm{C}=5 \mathrm{~s} / 10^{-5} \mathrm{~F}=5 \times 10^{5} \mathrm{Ohms}$
This is a very big resistance, but 5 seconds is pretty long in "circuit" time

## Discharging an RC circuit:



First, disconnect from EMF source.
$Q$ is at maximum value, $Q_{\max }=C \varepsilon$
$\Delta \mathrm{V}_{\mathrm{C}}$ is at maximum value of $\Delta \mathrm{V}_{\mathrm{C}, \text { max }}=\varepsilon$

## Discharging an RC circuit:



Then close switch at time $t=0$.

Circuit now has only R and C .

Current will flow from the capacitor, clockwise.

Note: I made a mistake in lecture: $\Delta \mathrm{V}_{\mathrm{C}}$ should be positive for travel in clockwise direction, with current

From loop rule: $+\Delta \mathrm{V}_{\mathrm{C}}-\Delta \mathrm{V}_{\mathrm{R}}=0$

Discharging an RC circuit:


So I $=\Delta \mathrm{V}_{\mathrm{R}} / \mathrm{R}$ will jump from 0 to $\varepsilon / R$ at $t=0$, then exponentially decay

$\mathrm{I}(\mathrm{t}):$


|  | $\mathrm{t}=0$ |  | $\mathrm{t} \rightarrow \infty$ |
| :--- | :--- | :--- | :--- |
| $\Delta \mathrm{V}_{\mathrm{C}}$ | $\varepsilon$ | $\varepsilon\left(\mathrm{e}^{-(t / \tau)}\right)$ | 0 |
| Q | $\mathrm{Q}_{\max }=\mathrm{C} \varepsilon$ | $\mathrm{C} \varepsilon\left(\mathrm{e}^{-(t / \tau)}\right)$ | 0 |
| $\Delta \mathrm{~V}_{\mathrm{R}}$ | $\varepsilon$ | $\varepsilon\left(\mathrm{e}^{-(\mathrm{t} / \tau)}\right)$ | 0 |
| I | $\varepsilon / \mathrm{R}$ | $\varepsilon / \mathrm{R}\left(\mathrm{e}^{-(t / \tau)}\right)$ | 0 |

Think about why increasing R and/or C would increase the time to discharge the capacitor:
$\tau$ will increase with $C$ because there is more stored charge in the capacitor to unload. $\tau$ increases with R because the flow of current is lower.

Given a $12 \mu \mathrm{~F}$ capacitor being discharged through a $2000 \Omega$ resistor. How long does it take for the voltage drop across the resistor $(\mathrm{V})$ to reach $5 \%$ of the initial voltage $\left(\mathrm{V}_{\max }\right)$ ?

Solution: First, calculate $\tau$ : $\tau=2000 \Omega$ * $12 \times 10^{-6} \mathrm{~F}=24 \mathrm{~ms}$
Then: $\mathrm{V}=\mathrm{V}_{\text {max }} \exp (-\mathrm{t} / \tau)$
$\mathrm{V} / \mathrm{V}_{\text {max }}=\exp (-\mathrm{t} / \tau)$
Take natural $\log (\ln )$ of both sides: $\ln \left(V / N_{0}\right)=-t / \tau$
Solve for $\mathrm{t}: \mathrm{t}=-\mathrm{\tau}^{*} \ln \left(\mathrm{~V} / \mathrm{V}_{\max }\right)=-0.024 \mathrm{~s}(\ln (0.05))=0.072 \mathrm{sec}$
(After 1 time constant, $\mathrm{I}, \Delta \mathrm{V}_{\mathrm{R}}, \Delta \mathrm{V}_{\mathrm{C}}$, etc. are $37 \%$ of their initial values) (After 3 time constants, $\mathrm{I}, \Delta \mathrm{V}_{\mathrm{R}}, \Delta \mathrm{V}_{\mathrm{C}}$, etc. are $5 \%$ of their initial values)

## Ex. 21.10: Charging a defibrillator

The RC circuit in a defibrillator has $C=32 \mu \mathrm{~F}, \mathrm{R}=47 \mathrm{k} \Omega$. The circuitry in the charging system applies 5000 V to the RC circuit to charge it.
A: Find $\tau$, Qmax, $I_{\text {max }}, q(t)$ and $I(t)$.
B: Find the energy in the capacitor when it's fully charged.
Answers:

$$
\begin{aligned}
& A: \tau=R C=\left(47 \times 10^{3} \Omega\right)\left(32 \times 10^{-6} \mathrm{~F}\right)=1.50 \mathrm{sec} \\
& Q_{\max }=C \varepsilon=\left(32 \times 10^{-6} \mathrm{~F}\right)(5000 \mathrm{~V})=0.160 \mathrm{C} \\
& I_{\max }=\varepsilon / R=(5000 \mathrm{~V}) /\left(47 \times 10^{3} \Omega\right)=0.106 \mathrm{~A} \\
& Q(\mathrm{t})=\mathrm{Q}_{\max }\left(1-\mathrm{e}^{-t / \tau}\right)=(0.160 \mathrm{C})\left(1-\mathrm{e}^{-t / .5 \mathrm{sec}}\right) \\
& I(\mathrm{t})=I_{\max }\left(\mathrm{e}^{-t / \tau}\right)=(0.106 \mathrm{~A})\left(\mathrm{e}^{-t / 1.5 \mathrm{sec}}\right)
\end{aligned}
$$

$$
B: U=1 / 2 C(\Delta V)^{2}=1 / 2\left(32 \times 10^{-6} F\right)(5000 \mathrm{~V})^{2}=400 \mathrm{~J}
$$

## Energy stored in the capacitor

Discharging a capacitor:

$$
\mathrm{U}=\mathrm{Q}^{2} / 2 \mathrm{C}=\mathrm{Q}_{\max }{ }^{2} / 2 \mathrm{C} \mathrm{e}^{\wedge}(-2 \mathrm{t} / \mathrm{RC})
$$

In-lecture demo: Charging and discharging an RC circuit
Brightness of light bulb (tracking current) exponentially decays both when charging \& discharging the capacitor bank

### 21.10: The atmosphere as a conductor: lightning/sparks

Air is normally a good insulator, but it's possible for current to exist in air (lightning, sparks)

When there's a strong electric field, the effective resistivity of the air drops....



School-for-champions.com

1. Molecules get ionized (e.g., by cosmic rays)
2. If a weak (strong) E-field is present, they accelerate away from each other slowly (rapidly)
3. For a WEAK E-field. The ions gently collide with other ions, recombine.
4. For a STRONG E-field: Ions collide violently. Electrons with sufficient kinetic energy can ionize other molecules.
5. More freed electrons become accelerated
6. Rapid increase in number of free electrons -- conductivity of the air is increased -- a current can be established

Lightning: Stepped leader: 200-300 A
Then, once connection between stepped leader and return stroke is made: Current rises to ~50000 A (typ. value).

Typical $\Delta \mathrm{V}$ between cloud and ground:
$\sim 10^{5-7} \mathrm{~V}$
Typical POWER delivered in a lightning strike: many billions of Watts

## Ch. 22: Magnetism

Bar magnets.
Planetary magnetic fields.
Forces on moving charges.
Electrical motors
(electrical energy $\rightarrow$ mechanical energy)
Generators (mechanical $\rightarrow$ electrical energy)
Magnetic data storage: magnetic tapes, computer drives MRI (magnetic resonance imaging)

A magnet has two poles (magnetic dipole)
North-South

Opposite poles attract


Like poles repel

stable

unstable


## No magnetic monopoles

No magnetic monopoles are found (i.e. there is no magnetic equivalent of charge).

If you cut a magnetic bar in two....


You get two smaller magnets:


You do not get separate N \& S magnetic charges -- no matter how small the magnet. This continues down to the scale of a single atom!


## Magnetic Field Lines

B-field lines flow from $N$ to $S$ pole.
Can be traced out using a compass


When placed in external magnetic fields, magnetic dipoles (e.g., compass needle) orient themselves parallel to B-field lines.

Vector $\overrightarrow{\mathbf{B}}$ Direction is given by the direction a north pole of a compass needle points in that location

## Magnetic Field Lines


© 2006 Brooks/Cole - Thomson
Can also be traced out with Fe filings

In-lecture demo: The 3-D magnetic field viewer

## Soft/Hard Magnetic materials

Soft magnetic materials (e.g., Fe): Easily magnetized, but can lose magnetization easily

Hard materials more difficult to magnetize, but retain magnetism for a long time ("permanent magnet") Ex.: metal alloys such as Alnico (Aluminum, Nickel, Cobalt)

Ferromagnetic materials: materials which can become magnetized and can be attracted to other magnets

## Magna-doodle


 structure of the display


The tip of the magnetic pen

## Ferromagnetic fluids

"Leaping ferrofluid demonstration:"
http://www.youtube.com/watch?v=Rg9xSLdXKXk
Sachiko Kodama, Yasushi Miyajima "Morpho Towers
-- Two Stand":
http://www.youtube.com/watch?v=me5Zzm2TXh4
(see also sachikokodama.com)
Ferrofluid: how it works:
http://www.youtube.com/watch?v=PvtUt02zVAs
Ferrofluid on the track of a Magnetized Meatgrinder http://www.youtube.com/watch?v=OE2pB1pyZN0

The N pole of a magnet got its name because it points roughly towards Earth's north pole. It points towards NE Canada, since that's the Earth's South magnetic pole.

Earth's B-field is actually
 upside down, and the dipole axis is offset slightly $\left(\sim 11^{\circ}\right)$ from Earth's rotation axis.

Earth's magnetic field has a vertical component at the surface:
Points upwards in southern hemisphere.
Points downwards in northern hemisphere.

Parallel to surface at magnetic equator.


Source: Current/ convection in hot Fe liquid core

