21.8 Kirchhoff's Rules for Complex DC circuits

Used in analyzing relatively more complex DC circuits, e.g., when multiple circuit loops exist

1. Junction rule
2. Loop rule

Junction Rule

Sum of currents entering any junction must equal the sum of the currents leaving that junction:

(a)
$I_{1}=I_{2}+I_{3}$
(b)

A consequence of conservation of charge (charge can't
 disappear/appear at a point)

Loop Rule

"The sum of voltage differences in going around a closed current loop is equal to zero"

Stems from conservation of energy
$+\varepsilon-I R_{1}-I R_{2}=0$
$\varepsilon=I R_{1}+\mathrm{IR}_{2}$

Application of Loop Rule

Choose a current direction (a to b)
When crossing a resistor: $\Delta \mathrm{V}=-\mathrm{IR}$ in
 traversal direction
When crossing a resistor: $\Delta \mathrm{V}=+\mathrm{IR}$ in opposing direction

When crossing a battery: - to + terminals:
$\Delta \mathrm{V}=+\varepsilon$
When crossing a battery: + to - terminals:
$\Delta \mathrm{V}=-\varepsilon$

Example of loop/junction rules

Example of loop/junction rules

Loop rule:
Start at point A, go in CW direction:

$$
\begin{aligned}
& -I_{1} R_{1}+I_{2} R_{2}=0 \\
& I_{1} R_{1}=I_{2} R_{2} \\
& I_{1} / I_{2}=R_{2} / R_{1}
\end{aligned}
$$

Example of loop/junction rules

$$
\begin{aligned}
& \text { Suppose } \mathrm{I}_{\text {tot }}=1.0 \mathrm{~A}, \mathrm{R}_{1}=3 \Omega \text { and } \\
& \mathrm{R}_{2}=6 \Omega .
\end{aligned}
$$

Find $I_{1} \& I_{2}$.
$\mathrm{I}_{1} / I_{2}=\mathrm{R}_{2} / \mathrm{R}_{1}=2$
or, $I_{1}=2 I_{2}$
But $I_{1}+I_{2}=I_{\text {tot }}=1.0 \mathrm{~A}$.
$2 \mathrm{I}_{2}+\mathrm{I}_{2}=1.0 \mathrm{~A}$
So $I_{2}=0.33 \mathrm{~A}$, and $\mathrm{I}_{1}=0.67 \mathrm{~A}$.

Example of loop/junction rules

Example of loop/junction rules

Loop rule, cont'd

Loop rule, cont'd

Another example:

How to use Kirchhoff's Rules

- Draw the circuit diagram and assign labels and symbols to all known and unknown quantities
- Assign directions to currents.
- Apply the junction rule to any junction in the circuit
- Apply the loop rule to as many loops as are needed to solve for the unknowns
- Solve the equations simultaneously for the unknown quantities
- Check your answers -- substitute them back into the original equations!

Example for Kirchhoff's Rules: \#21.35

first, we can use the Series Law and redraw the circuit:

Next, we assign. directions to currents. Lets guess that the currents flow as fallows.

$$
I_{1} \underset{\left(I_{2}\right.}{\substack{\text { Unction Rule } \\ I_{1} \\ I_{1} \\ I_{1} \\ I_{2} \\ I_{3}} I_{3}}
$$

Apply Loop cuke, left-hand loop. going
cants- clockwise four pout A

$$
+4 V-(6 \Omega) I_{2}-(8 \Omega) I_{1}=0
$$

Loup Rule, biggest loop, going counter clockwise
from point A

$$
+12 V-(4 \Omega) I_{3}-(8 \Omega) I_{1}=0 \quad{ }^{* 3} .
$$

Now we have tace equations and tare e unknowns (I_{1}, I_{2}, and I_{3})

Alternate loop cube: Right-hand loop, going counter-clockwise
from point A :

$$
+12 V-4 \Omega) I_{3}+(6 \Omega) I_{2}-4 V=0
$$

Substitute (11) into <\#2y and in

$$
\begin{aligned}
& +4 V-(6 \Omega) I_{2}-8 \Omega\left(I_{2}+I_{3}\right)=0 \\
& +12 V-4 \Omega) I_{3}-8 \Omega\left(I_{2}+I_{3}\right)=0
\end{aligned}
$$

Now we have two equations and two unknowns (I_{2} and I_{3})

Solve for I_{3} in terms of I_{2}, using 45

$$
\begin{gathered}
\left.\left.+4 V-6 \Omega) I_{2}-8 \Omega\right) I_{2}-8 \Omega\right) I_{3}=0 \\
\left.4 V-(4 \Omega) I_{2}=(8 \Omega) I_{3}\right] \text { units are volts } \\
\left.\left.\frac{4 V}{8 \Omega}-\frac{14 \Omega}{8 \Omega}\right) I_{2}=I_{3}\right] \text { units are now Amps } \\
0.5 \mathrm{~A}-1.75 I_{2}=I_{2}\langle 45 \mathrm{~A}\rangle
\end{gathered}
$$

Rearrange 46, $\left.12 \mathrm{~V}-(4 \Omega) I_{3}-(8 \Omega) I_{2}-8 \Omega\right) I_{3}=0$

$$
\begin{align*}
& \left.12 \mathrm{~V}-(8 \Omega) I_{2}-12 \Omega\right) I_{3}=0 \\
& \left.3 \mathrm{~V}-2 \Omega) I_{2}-3 \Omega\right) I_{3}=0
\end{align*}
$$

Substitute expression for I_{3} ($\# 5 \mathrm{~A}$) into $\# 6 \mathrm{~A}$

$$
\begin{gathered}
3 \mathrm{~V}-(2 \Omega) I_{2}-3 \Omega\left(0.5 \mathrm{~A}-1.75 I_{2}\right)=0 \\
3 \mathrm{~V}-(2 \Omega) I_{2}-1.5 \mathrm{~V}+(5.25 \Omega) I_{2}=0 \\
1.5 \mathrm{~V}+3.25 \Omega) I_{2}=0 \\
I_{2}=-0.462 \mathrm{~A}
\end{gathered}
$$

Our initial guess for the direction of I_{2} was incorrect

Substitute value for I_{2} back into "SA).

$$
\begin{aligned}
& 0.5 \mathrm{~A}-1.75 I_{2}=I_{3} \\
& 0.5 \mathrm{~A}-1.75(-0.462 \mathrm{~A})=I_{3} \\
& 0.5 \mathrm{~A}+0.81 \mathrm{~A}=I_{3} \quad I_{3}=+1.31 \mathrm{~A}
\end{aligned}
$$

Finally. substitute back into $/ \mathrm{M}$ (Junction rule): $\left[I_{1}=I_{2}+I_{3}=-0.462 \mathrm{~A}+1.31 \mathrm{~A}=0.85 \mathrm{~A}\right.$

The initial guess of direction of currents was motivated by the (reasonable) assumption that both batteries would force (positive-) current to travel up in both the middle and right branches, forcing current to travel down in the left branch

But in the left branch, there is the 8Ω resistor (the largest-resistance resistor). Because of the string opposition to current in the left branch, current is forced downward in the middle branch -"over-riding" the upward-directed EMF supplied by the 4-V battery.

21.9 RC Circuits

Introduction to time-dependent currents and voltages.

Applications: timing circuits, clocks, computers, charging + discharging capacitors

An RC circuit

Battery, Capacitor, Resistor and switch connected in series.

Initially, the capacitor is
uncharged. We're about to
close the switch and allow the capacitor to start charging...

RC circuit: charging

At time $\mathrm{t}=0$, close Switch

An RC circuit

At time $t=0$, close switch
Initially (at $\mathrm{t}=0$), $\mathrm{Q}=0$.
$\Delta \mathrm{V}_{\mathrm{C}}($ at $\mathrm{t}=0)=\mathrm{Q}(\mathrm{t}=0) / \mathrm{C}=0$
Loop Rule: $\Sigma \Delta \mathrm{V}=0=+\varepsilon-\Delta \mathrm{V}_{\mathrm{R}}-\Delta \mathrm{V}_{\mathrm{C}}$

$+\varepsilon-I R-\Delta V_{C}=0$
So when charge $=0$ (which occurs at $t=0$), $\varepsilon=I R$ and so the current I jumps immediately up to ε / R
(at this instant, capacitor has no effect)

RC circuit: charging

Immediately after time $\mathrm{t}=0$: Current starts to flow. Charge starts to accumulate on Capacitor (at a rate $\mathrm{I}=\mathrm{dQ} / \mathrm{dt}$).

As Q increases over time, $\Delta \mathrm{V}_{\mathrm{C}}=\mathrm{Q} / \mathrm{C}$ also increases.

But remember $\Delta \mathrm{V}_{\mathrm{C}}+\Delta \mathrm{V}_{\mathrm{R}}=\varepsilon$.
So ΔV_{R} is decreasing over time.
And I through the resistor $=\Delta \mathrm{V}_{\mathrm{R}} / \mathrm{R}$ is also decreasing.

RC circuit: charging

After a very long time:
Charge accumulates until Q reaches its maximum:
$\Delta \mathrm{V}_{\mathrm{C}}$ goes to ε. Total Q on the

capacitor goes to $C \varepsilon$.
$+\varepsilon=\Delta \mathrm{V}_{\mathrm{C}}+\Delta \mathrm{V}_{\mathrm{R}}$
$\Delta \mathrm{V}_{\mathrm{R}}$ goes to zero. And I goes to zero.

RC circuit: charging

	$\mathrm{t}=0$		$\mathrm{t} \rightarrow \infty$
$\Delta \mathrm{V}_{\mathrm{C}}$	0	$\varepsilon\left(1-\mathrm{e}^{-(t / \tau)}\right)$	ε
Q	0	$\mathrm{C} \varepsilon\left(1-\mathrm{e}^{-(t / \tau)}\right)$	$\mathrm{C} \varepsilon$
$\Delta \mathrm{V}_{\mathrm{R}}$	ε	$\varepsilon\left(\mathrm{e}^{-(\mathrm{t} / \tau)}\right)$	0
I	ε / R	$(\varepsilon / \mathrm{R})\left(\mathrm{e}^{-(t / \tau)}\right)$	0

Exponential decay

Rate of decay is proportional to amount of species.
Other applications: Nuclear decay, some chemical reactions

Atmospheric pressure decreases exponentially with height
If an object of one temperature is exposed to a medium of another temperature, then the temperature difference between the object and the medium undergoes exponential decay.

Absorption of electromagnetic radiation by a medium (intensity decreases exponentially with distance into medium)

Time constant $\tau=R C$

RC is called the time constant: it's a measure of how fast the capacitor is charged up.

It has units of time:
$R C=(V / I)(q / V)=q / I=q /(q / t)=t$
At $t=R C, Q(t)$ and $\Delta V_{C}(t)$ go to $1-1 / e=0.63$ of the final values

At $t=R C, I(t)$ and $\Delta V_{R}(t)$ go to $1 / \mathrm{e}$ of the initial values

Time constant $\tau=R C$

Think about why increasing R and/or C would increase the time to charge up the capacitor:

When charging up: τ will increase with C because the capacitor can store more charge.
Increases with R because the flow of current is lower.

Time constant $\tau=R C$

RC: charging

You want to make a flashing circuit that charges a capacitor through a resistor up to a voltage at which a neon bulb discharges once every 5.0 sec . If you have a 10 microfarad capacitor what resistor do you need?

Solution: Have the flash point be equal to $0.63 \Delta \mathrm{~V}_{\mathrm{C} \text {, max }}$
$\tau=R C \rightarrow R=\tau=\frac{\text { time }}{} / \mathrm{C}=5 \mathrm{~s} / 10^{-5} \mathrm{~F}=5 \times 10^{5} \mathrm{Ohms}$
This is a very big resistance, but 5 seconds is pretty long in "circuit" time

