21.8 Kirchhoff's Rules for Complex DC circuits

Used in analyzing relatively more complex DC circuits, e.g., when multiple circuit loops exist

1. Junction rule
2. Loop rule

Junction Rule

Sum of currents entering any junction must equal the sum of the currents leaving that junction:

(a)
$I_{1}=I_{2}+I_{3}$
(b)

A consequence of conservation of charge (charge can't
 disappear/appear at a point)

Loop Rule

"The sum of voltage differences in going around a closed current loop is equal to zero"

Stems from conservation of energy
$+\varepsilon-I R_{1}-I R_{2}=0$
$\varepsilon=I R_{1}+\mathrm{IR}_{2}$

Application of Loop Rule

Choose a current direction (a to b)
When crossing a resistor: $\Delta \mathrm{V}=-\mathrm{IR}$ in
 traversal direction
When crossing a resistor: $\Delta \mathrm{V}=+\mathrm{IR}$ in opposing direction

When crossing a battery: - to + terminals:
$\Delta \mathrm{V}=+\varepsilon$
When crossing a battery: + to - terminals:
$\Delta \mathrm{V}=-\varepsilon$

Example of loop/junction rules

Example of loop/junction rules

Loop rule:
Start at point A, go in CW direction:

$$
\begin{aligned}
& -I_{1} R_{1}+I_{2} R_{2}=0 \\
& I_{1} R_{1}=I_{2} R_{2} \\
& I_{1} / I_{2}=R_{2} / R_{1}
\end{aligned}
$$

Example of loop/junction rules

Example of loop/junction rules

Example of loop/junction rules

more loop rule

more loop rule

more loop rule

How to use Kirchhoff's Rules

- Draw the circuit diagram and assign labels and symbols to all known and unknown quantities
- Assign directions to currents.
- Apply the junction rule to any junction in the circuit
- Apply the loop rule to as many loops as are needed to solve for the unknowns
- Solve the equations simultaneously for the unknown quantities
- Check your answers -- substitute them back into the original equations!

Example for Kirchoff's Rules: \#21.35

first, we can use the Series Law and redraw the circuit:

Next, we assign. directions to currents. Lets guess that the currents flow as fallows.

$$
I_{1} \underset{\left(I_{2}\right.}{\substack{\text { Unction Rule } \\ I_{2} \\ I_{1} \\ I_{1} \\ I_{2}+I_{3}}}
$$

Apply Loop rule, left-hand loop, going
carts clockwise fou pout A

$$
+4 V-(6 \Omega) I_{2}-(8 \Omega) I_{1}=0
$$

Loop Rule, biggest loop, going counter clock wise
from point A

$$
\begin{aligned}
&+12 V-(4 \Omega) I_{3}-(8 \Omega) I_{1}=0 \text { Nom we have these equations } \\
& \text { and tare unknowns }\left(I_{1}, I_{2},\right. \\
&\text { and } \left.I_{3}\right)
\end{aligned}
$$

Alternate loop cube: Right -hand loop, going counter-clockwise
from point A :

$$
+12 V-4 \Omega) I_{3}+(6 \Omega) I_{2}-4 V=0
$$

Substitute (11) into <\#2y and in

$$
\begin{aligned}
& +4 V-(6 \Omega) I_{2}-8 \Omega\left(I_{2}+I_{3}\right)=0 \\
& +12 V-4 \Omega) I_{3}-8 \Omega\left(I_{2}+I_{3}\right)=0
\end{aligned}
$$

Now we have two equations and two unknowns (I_{2} and I_{3})

Solve for I_{3} in terms of I_{2}, using 45

$$
\begin{gathered}
\left.\left.+4 V-6 \Omega) I_{2}-8 \Omega\right) I_{2}-8 \Omega\right) I_{3}=0 \\
\left.4 V-(4 \Omega) I_{2}=(8 \Omega) I_{3}\right] \text { units are volts } \\
\left.\left.\frac{4 V}{8 \Omega}-\frac{14 \Omega}{8 \Omega}\right) I_{2}=I_{3}\right] \text { units are now Amps } \\
0.5 \mathrm{~A}-1.75 I_{2}=I_{2}\langle 45 \mathrm{~A}\rangle
\end{gathered}
$$

Rearrange 46, $\left.12 \mathrm{~V}-(4 \Omega) I_{3}-(8 \Omega) I_{2}-8 \Omega\right) I_{3}=0$

$$
\begin{align*}
& \left.12 \mathrm{~V}-(8 \Omega) I_{2}-12 \Omega\right) I_{3}=0 \\
& \left.3 \mathrm{~V}-2 \Omega) I_{2}-3 \Omega\right) I_{3}=0
\end{align*}
$$

Substitute expression for I_{3} ($\# 5 \mathrm{~A}$) into $\# 6 \mathrm{~A}$

$$
\begin{gathered}
3 \mathrm{~V}-(2 \Omega) I_{2}-3 \Omega\left(0.5 \mathrm{~A}-1.75 I_{2}\right)=0 \\
3 \mathrm{~V}-(2 \Omega) I_{2}-1.5 \mathrm{~V}+(5.25 \Omega) I_{2}=0 \\
1.5 \mathrm{~V}+3.25 \Omega) I_{2}=0 \\
I_{2}=-0.462 \mathrm{~A}
\end{gathered}
$$

Our initial guess for the direction of I_{2} was incorrect

Substitute value for I_{2} back into "SA).

$$
\begin{aligned}
& 0.5 \mathrm{~A}-1.75 I_{2}=I_{3} \\
& 0.5 \mathrm{~A}-1.75(-0.462 \mathrm{~A})=I_{3} \\
& 0.5 \mathrm{~A}+0.81 \mathrm{~A}=I_{3} \quad I_{3}=+1.31 \mathrm{~A}
\end{aligned}
$$

Finally. substitute back into $/ \mathrm{M}$ (Junction rule): $\left[I_{1}=I_{2}+I_{3}=-0.462 \mathrm{~A}+1.31 \mathrm{~A}=0.85 \mathrm{~A}\right.$

The initial guess of direction of currents was motivated by the (reasonable) assumption that both batteries would force (positive-) current to travel up in both the middle and right branches, forcing current to travel down in the left branch

But in the left branch, there is the 8Ω resistor (the largest-resistance resistor). Because of the string opposition to current in the left branch, current is forced downward in the middle branch -"over-riding" the upward-directed EMF supplied by the 4-V battery.

