PHYSICS 110A : CLASSICAL MECHANICS

1. Introduction to Dynamics
 motion of a mechanical system
 equations of motion : Newton’s second law
 ordinary differential equations (ODEs)
 dynamical systems
 simple examples

2. Systems of Particles
 kinetic, potential, and interaction potential energies
 forces; Newton’s third law
 momentum conservation
 torque and angular momentum
 kinetic energy and the work-energy theorem

3. Motion in $d = 1$: Two-Dimensional Phase Flows
 (x, v) phase space
 dynamical system $\frac{d}{dt} \{ x, v \} = \{ a(x, v) \}$
 two-dimensional phase flows
 examples: harmonic oscillator and pendulum
 fixed points in two-dimensional phase space; separatrices

4. Solution of the Equations of One-Dimensional Motion
 Potential energy $U(x)$
 Conservation of energy
 sketching phase flows from $U(x)$
 solution by quadratures
 turning points; period of orbit

5. Linear Oscillations
 Taylor’s theory and the ubiquity of harmonic motion
 the damped harmonic oscillator: $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0$
 reduction to algebraic equation
 generalization to all autonomous homogeneous linear ODEs
 solution to the damped harmonic oscillator: underdamped and overdamped behavior

6. Forced Linear Oscillations
 $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f(t)$
 solution for harmonic forcing $f(t) = A \cos(\Omega t)$
 presence of homogeneous solution: transients
 amplitude resonance and phase lag; Q factor

7. Green’s functions for autonomous linear ODEs
 Fourier transform
 physical meaning of $G(t - t')$; causality
 response to a pulse

8. MIDTERM EXAMINATION #1
9. **Calculus of Variations I**
 Snell’s law for refraction at an interface
 continuum limit of many interfaces
 functionals
 variational calculus: extremizing $\int dx L(y, y', x)$
 preview: Newton’s second law from $L = T - U$

10. **Calculus of Variations II**
 Examples
 surfaces of revolution
 geodesics
 brachistochrone
 generalization to several dependent and independent variables
 Constrained Extremization
 Lagrange undetermined multipliers in calculus: review
 systems with integral constraints
 hanging rope of fixed length
 holonomic constraints

11. **Lagrangian Dynamics**
 generalized coordinates
 action functional
 equations of motion: Newton’s second law
 examples: spring, pendulum, etc.
 double pendulum: Lagrangian and equations of motion
 Lagrangian for a charged particle interacting with an electromagnetic field
 Lorentz force law

12. **Noether’s Theorem and Conservation Laws**
 continuous symmetries
 “one-parameter family of diffeomorphisms” $q_i \rightarrow h_i^\lambda(q_1, \ldots, q_N)$
 Noether’s theorem and the conserved “charge” $Q = \sum_i \frac{\partial L}{\partial q_i} \frac{\partial h_i^\lambda}{\partial \lambda} \bigg|_{\lambda=0}$
 linear and angular momentum

13. **Constrained Dynamical Systems**
 undetermined multipliers as forces of constraints
 simple pendulum with $r = l$ or $x^2 + y^2 = l^2$ constraint
 Examples

14. MIDTERM EXAMINATION #2
15. The Two-Body Central Force Problem

- CM and relative coordinates
- angular momentum conservation and Kepler’s law \(\dot{A} = \text{const.} \)
- energy conservation
- the effective potential
 - radial equation of motion for the relative coordinate
 - the effective potential and its interpretation
- phase curves
- solution for \(r(t) \) and \(\phi(t) \) by quadratures

16. The Shape of the Orbit

- equation for \(r(\phi) \), the geometric shape of the orbit
 - \(s = 1/r \) substitution
- examples
 - almost circular orbits: bound versus closed motion, precession

17. Coupled Oscillations I: The Double Pendulum

- review: Lagrangian for the double pendulum
- equations of motion
- linearization
- solution of two coupled linear equations
- normal modes

18. Coupled Oscillations II: General Theory

- harmonic potentials
- \(T \) and \(V \) matrices
- normal modes
- the mathematical problem: simultaneous diagonalization of \(T \) and \(V \)

19. Coupled Oscillations III: The Recipe

- eigenvalues: \(\det(\omega^2 T - V) = 0 \)
- eigenvectors: \((\omega^2 T_{ij} - V_{ij})a^{(s)}_j = 0 \)
- normalization: \(a^{(s)}_i T_{ij} a^{(s')}_j = \delta_{ss'} \)
- modal matrix: \(A_{js} = a^{(s)}_j \)
- examples

- **COMPREHENSIVE FINAL EXAMINATION**