Physics 110A: Final Exam

Instructions: You are to do four problems. You must do both problems 4 and 5. You may choose any two of problems 1, 2 , and 3.
[1] The bletch is a disgusting animal native to the Forest of Jkroo on the planet Barney. The bletch population obeys the dynamical equation

$$
\frac{d N}{d t}=a N^{2}-b N^{3}
$$

where N is the number of bletches, and a and b are positive constants. (Bletches reproduce asexually, but only when another bletch is watching. However, when there are three or more bletches around, they beat the @!!*\$\&* out of each other.)
(a) Sketch the phase flow for N (strange as the bletch is, you still can rule out $N<0$). Identify all fixed points and classify them according to their stability.
[5 points]
(b) The bletch population is now harvested (they make nice shoes). To model this, we add an extra term to the dynamics:

$$
\frac{d N}{d t}=-h N+a N^{2}-b N^{3}
$$

Show that the phase flow now depends crucially on h, in that there are two qualitatively different flows depending on whether $h<h_{\mathrm{c}}(a, b)$ or $h>h_{\mathrm{c}}(a, b)$. Find the critical value $h_{c}(a, b)$ and sketch the phase flows for $h<h_{\mathrm{c}}$ and $h>h_{\mathrm{c}}$.
[10 points]
(c) In equilibrium, the rate at which bletches are harvested is $R=h N^{*}$, where N^{*} is the equilibrium bletch population. Suppose we start with $h=0$, in which case the equilibrium population is given by the value at the attractive fixed point you found in (a). Now h is increased very slowly from zero. As h is increased, the equilibrium population changes. Sketch R versus h. What value of h achieves the biggest bletch harvest? What is the value of $R_{\max }$?

```
[10 points]
```

[2] Consider the forced harmonic oscillator

$$
\ddot{x}+2 \beta \dot{x}+\omega_{\circ}^{2} x=f_{\circ} \cos (\Omega t) .
$$

The value of f_{\circ} is held constant at $f_{\circ}=8 \mathrm{~m} / \mathrm{s}^{2}$ as the driving frequency Ω is varied. Recall that the amplitude of the inhomogeneous solution, as well as the phase shift, depends on Ω, viz.

$$
\begin{aligned}
x_{\mathrm{inh}}(t) & =A f_{\circ} \cos (\Omega t-\delta) \\
A(\Omega) & =\left[\left(\Omega^{2}-\omega_{\circ}^{2}\right)^{2}+4 \beta^{2} \Omega^{2}\right]^{-1 / 2} \\
\delta(\Omega) & =\tan ^{-1}\left(\frac{2 \beta \Omega}{\omega_{\circ}^{2}-\Omega^{2}}\right) .
\end{aligned}
$$

In this problem, you are to neglect the homogeneous part of the solution. You are asked to design a system such that the maximum displacement $x_{\mathrm{inh}}^{\max }$ is $d=12.5 \mathrm{~cm}$. This maximum displacement will of course be achieved when the driving frequency Ω hits a particular value.
(a) If $\beta=8 \mathrm{~s}^{-1}$, what value of ω_{\circ} is needed in order that $x_{\mathrm{inh}}^{\max }=d$? For what driving frequency Ω^{*} is this maximum achieved?
[12 points]
(b) If $\beta=4 \mathrm{~s}^{-1}$, what value of ω_{\circ} is needed in order that $x_{\mathrm{inh}}^{\max }=d$? For what driving frequency Ω^{*} is this maximum achieved?
[13 points]

Hint: At some point, you must contend with the fact that the frequency Ω^{*} at which the response is maximized is either zero or finite, depending on the values of ω_{\circ} and β.
[3] A pendulum bob of mass m hangs at the end of a massless rigid rod of length ℓ. The point of support of the pendulum is constrained to move along a horizontally-oriented circle of radius ℓ. The instantaneous plane of motion of the pendulum is always perpendicular to $\hat{\phi}$, where ϕ is the azimuthal angle along the circle. The point of support is itself massless.
(a) Choose as generalized coordinated the azimuthal angle ϕ and the angle θ that the pendulum rod makes with respect to the vertical. Find the Lagrangian L.
[7 points]
(b) Write down the Euler-Lagrange equations.
[7 points]
(c) What quantities are conserved?
[6 points]
(d) Show that θ obeys the equation

$$
\ddot{\theta}=-\frac{\partial \mathcal{U}_{\mathrm{eff}}}{\partial \theta} .
$$

Find the (scaled) effective potential $\mathcal{U}_{\text {eff }}(\theta)$.
[4] Two particles attract each other according to the central potential

$$
U(r)=-\frac{k}{r}\left(1+\frac{a}{2 r}\right)
$$

where $k>0$ and $a>0$. (This is gravity with an additional $1 / r^{2}$ potential added.) Denote the reduced mass by μ, and the conserved angular momentum by ℓ, as usual.
(a) Find the radius $r_{0}(\ell)$ of the circular orbit. Show that there is no circular orbit if ℓ is too small.
[10 points]
(b) The circular orbit is perturbed slightly. Find the geometric shape of the perturbation, $\delta r(\phi)$. If periapsis comes exactly once every four revolutions (i.e. the perturbed orbit closes after $\Delta \phi=8 \pi$), what must ℓ be? Recall the differential equation for the shape of the orbit is

$$
\frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}=-\frac{\mu r^{4}}{\ell^{2}} \frac{\partial U_{\mathrm{eff}}}{\partial r}
$$

[10 points]

(c) The shape of the orbit can be determined exactly! Set $s=1 / r$ and show that the geometric equation for $s(\phi)$ is that of a harmonic oscillator subjected to a constant force. Solve and find $r(\phi)$.
[5 points]
[5] A system of masses and springs is arranged as shown below.

All motion occurs along the x-direction. The masses and spring constants are as assigned in the sketch. Choose as generalized coordinates the displacements η_{1} and η_{2} from equilibrium.
(a) Find the T and V matrices.
[7 points]
(b) Find the normal mode frequencies.
[7 points]
(c) Find the (properly normalized) modal matrix A.
[6 points]
(d) At time $t=0, \eta_{1}(0)=d, \eta_{2}(0)=0$, and $\dot{\eta}_{1}(0)=\dot{\eta}_{2}(0)=0$. Find $\eta_{1}(t)$ and $\eta_{2}(t)$ for all time.
[5 points]

