Physics 110A: Final Exam

Instructions: You are to do four problems. You must do both problems 4 and 5. You may choose any two of problems 1, 2, and 3.

[1] The bletch is a disgusting animal native to the Forest of Jkroo on the planet Barney. The bletch population obeys the dynamical equation

$$\frac{dN}{dt} = aN^2 - bN^3 \; ,$$

where N is the number of bletches, and a and b are positive constants. (Bletches reproduce as excually, but only when another bletch is watching. However, when there are three or more bletches around, they beat the @!!** out of each other.)

(a) Sketch the phase flow for N (strange as the bletch is, you still can rule out N < 0). Identify all fixed points and classify them according to their stability.

[5 points]

(b) The bletch population is now *harvested* (they make nice shoes). To model this, we add an extra term to the dynamics:

$$\frac{dN}{dt} = -hN + aN^2 - bN^3$$

Show that the phase flow now depends crucially on h, in that there are two qualitatively different flows depending on whether $h < h_c(a, b)$ or $h > h_c(a, b)$. Find the critical value $h_c(a, b)$ and sketch the phase flows for $h < h_c$ and $h > h_c$.

[10 points]

(c) In equilibrium, the rate at which bletches are harvested is $R = hN^*$, where N^* is the equilibrium bletch population. Suppose we start with h = 0, in which case the equilibrium population is given by the value at the attractive fixed point you found in (a). Now h is increased very slowly from zero. As h is increased, the equilibrium population changes. Sketch R versus h. What value of h achieves the biggest bletch harvest? What is the value of R_{max} ?

[10 points]

[2] Consider the forced harmonic oscillator

$$\ddot{x} + 2\beta \dot{x} + \omega_{\circ}^2 x = f_{\circ} \cos(\Omega t) \; .$$

The value of f_{\circ} is held constant at $f_{\circ} = 8 \text{m/s}^2$ as the driving frequency Ω is varied. Recall that the amplitude of the inhomogeneous solution, as well as the phase shift, depends on Ω , *viz*.

$$x_{\rm inh}(t) = A f_{\circ} \cos(\Omega t - \delta)$$
$$A(\Omega) = [(\Omega^2 - \omega_{\circ}^2)^2 + 4\beta^2 \Omega^2]^{-1/2}$$
$$\delta(\Omega) = \tan^{-1} \left(\frac{2\beta\Omega}{\omega_{\circ}^2 - \Omega^2}\right) .$$

In this problem, you are to neglect the homogeneous part of the solution. You are asked to design a system such that the maximum displacement x_{inh}^{max} is d = 12.5 cm. This maximum displacement will of course be achieved when the driving frequency Ω hits a particular value.

(a) If $\beta = 8 \text{ s}^{-1}$, what value of ω_{\circ} is needed in order that $x_{\text{inh}}^{\text{max}} = d$? For what driving frequency Ω^* is this maximum achieved? [12 points]

(b) If $\beta = 4 \text{ s}^{-1}$, what value of ω_{\circ} is needed in order that $x_{\text{inh}}^{\text{max}} = d$? For what driving frequency Ω^* is this maximum achieved?

[13 points]

Hint: At some point, you must contend with the fact that the frequency Ω^* at which the response is maximized is either zero or finite, depending on the values of ω_{\circ} and β .

[3] A pendulum bob of mass m hangs at the end of a massless rigid rod of length ℓ . The point of support of the pendulum is constrained to move along a horizontally-oriented circle of radius ℓ . The instantaneous plane of motion of the pendulum is always perpendicular to $\hat{\phi}$, where ϕ is the azimuthal angle along the circle. The point of support is itself massless.

(a) Choose as generalized coordinated the azimuthal angle φ and the angle θ that the pendulum rod makes with respect to the vertical. Find the Lagrangian L.
[7 points]

(b) Write down the Euler-Lagrange equations.

[7 points]

(c) What quantities are conserved?

[6 points]

(d) Show that θ obeys the equation

$$\ddot{ heta} = -rac{\partial \mathcal{U}_{ ext{eff}}}{\partial heta} \; .$$

Find the (scaled) effective potential $\mathcal{U}_{eff}(\theta)$. [5 points] 3

[4] Two particles attract each other according to the central potential

$$U(r) = -\frac{k}{r} \left(1 + \frac{a}{2r} \right) \;,$$

where k > 0 and a > 0. (This is gravity with an additional $1/r^2$ potential added.) Denote the reduced mass by μ , and the conserved angular momentum by ℓ , as usual.

(a) Find the radius $r_{\circ}(\ell)$ of the circular orbit. Show that there is no circular orbit if ℓ is too small. [10 points]

(b) The circular orbit is perturbed slightly. Find the geometric shape of the perturbation, $\delta r(\phi)$. If periapsis comes exactly once every four revolutions (*i.e.* the perturbed orbit closes after $\Delta \phi = 8\pi$), what must ℓ be? Recall the differential equation for the shape of the orbit is

$$\frac{d^2r}{d\phi^2} - \frac{2}{r} \left(\frac{dr}{d\phi}\right)^2 = -\frac{\mu r^4}{\ell^2} \frac{\partial U_{\text{eff}}}{\partial r}$$

[10 points]

(c) The shape of the orbit can be determined exactly! Set s = 1/r and show that the geometric equation for $s(\phi)$ is that of a harmonic oscillator subjected to a constant force. Solve and find $r(\phi)$.

[5 points]

[5] A system of masses and springs is arranged as shown below.

All motion occurs along the x-direction. The masses and spring constants are as assigned in the sketch. Choose as generalized coordinates the displacements η_1 and η_2 from equilibrium.

(a) Find the T and V matrices.

[7 points]

(b) Find the normal mode frequencies.

[7 points]

(c) Find the (properly normalized) modal matrix A.

[6 points]

(d) At time t = 0, $\eta_1(0) = d$, $\eta_2(0) = 0$, and $\dot{\eta}_1(0) = \dot{\eta}_2(0) = 0$. Find $\eta_1(t)$ and $\eta_2(t)$ for all time. [5 points]