Chapter 2

Systems of Particles

2.1 Work-Energy Theorem

Consider a system of many particles, with positions \boldsymbol{r}_{i} and velocities $\dot{\boldsymbol{r}}_{i}$. The kinetic energy of this system is

$$
\begin{equation*}
T=\sum_{i} T_{i}=\sum_{i} \frac{1}{2} m_{i} \dot{\boldsymbol{r}}_{i}^{2} \tag{2.1}
\end{equation*}
$$

Now let's consider how the kinetic energy of the system changes in time. Assuming each m_{i} is time-independent, we have

$$
\begin{equation*}
\frac{d T_{i}}{d t}=m_{i} \dot{\boldsymbol{r}}_{i} \cdot \ddot{\boldsymbol{r}}_{i} . \tag{2.2}
\end{equation*}
$$

Here, we've used the relation

$$
\begin{equation*}
\frac{d}{d t}\left(\boldsymbol{A}^{2}\right)=2 \boldsymbol{A} \cdot \frac{d \boldsymbol{A}}{d t} . \tag{2.3}
\end{equation*}
$$

We now invoke Newton's 2nd Law, $m_{i} \ddot{\boldsymbol{r}}_{i}=\boldsymbol{F}_{i}$, to write eqn. 2.2 as $\dot{T}_{i}=\boldsymbol{F}_{i} \cdot \dot{\boldsymbol{r}}_{i}$. We integrate this equation from time t_{A} to t_{B} :

$$
\begin{align*}
T_{i}^{(\mathrm{B})}-T_{i}^{(\mathrm{A})} & =\int_{t_{\mathrm{A}}}^{t_{\mathrm{B}}} d t \frac{d T_{i}}{d t} \\
& =\int_{t_{\mathrm{A}}}^{t_{\mathrm{B}}} d t \boldsymbol{F}_{i} \cdot \dot{\boldsymbol{r}}_{i} \equiv \sum_{i} W_{i}^{(\mathrm{A} \rightarrow \mathrm{~B})} \tag{2.4}
\end{align*}
$$

where $W_{i}^{(\mathrm{A} \rightarrow \mathrm{B})}$ is the total work done on particle i during its motion from state A to state B, Clearly the total kinetic energy is $T=\sum_{i} T_{i}$ and the total work done on all particles is $W^{(\mathrm{A} \rightarrow \mathrm{B})}=\sum_{i} W_{i}^{(\mathrm{A} \rightarrow \mathrm{B})}$. Eqn. 2.4 is known as the work-energy theorem. It says that

In the evolution of a mechanical system, the change in total kinetic energy is equal to the total work done: $T^{(\mathrm{B})}-T^{(\mathrm{A})}=W^{(\mathrm{A} \rightarrow \mathrm{B})}$.

Figure 2.1: Two paths joining points A and B.

2.2 Conservative and Nonconservative Forces

For the sake of simplicity, consider a single particle with kinetic energy $T=\frac{1}{2} m \dot{\boldsymbol{r}}^{2}$. The work done on the particle during its mechanical evolution is

$$
\begin{equation*}
W^{(\mathrm{A} \rightarrow \mathrm{~B})}=\int_{t_{\mathrm{A}}}^{t_{\mathrm{B}}} d t \boldsymbol{F} \cdot \boldsymbol{v} \tag{2.5}
\end{equation*}
$$

where $\boldsymbol{v}=\dot{\boldsymbol{r}}$. This is the most general expression for the work done. If the force \boldsymbol{F} depends only on the particle's position \boldsymbol{r}, we may write $d \boldsymbol{r}=\boldsymbol{v} d t$, and then

$$
\begin{equation*}
W^{(\mathrm{A} \rightarrow \mathrm{~B})}=\int_{r_{\mathrm{A}}}^{r_{\mathrm{B}}} d \boldsymbol{r} \cdot \boldsymbol{F}(\boldsymbol{r}) . \tag{2.6}
\end{equation*}
$$

Consider now the force

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{r})=K_{1} y \hat{\boldsymbol{x}}+K_{2} x \hat{\boldsymbol{y}}, \tag{2.7}
\end{equation*}
$$

where $K_{1,2}$ are constants. Let's evaluate the work done along each of the two paths in fig. 2.1:

$$
\begin{align*}
W^{(\mathrm{I})} & =K_{1} \int_{x_{\mathrm{A}}}^{x_{\mathrm{B}}} d x y_{\mathrm{A}}+K_{2} \int_{y_{\mathrm{A}}}^{y_{\mathrm{B}}} d y x_{\mathrm{B}}=K_{1} y_{\mathrm{A}}\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)+K_{2} x_{\mathrm{B}}\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) \tag{2.8}\\
W^{(\mathrm{II})} & =K_{1} \int_{x_{\mathrm{A}}}^{x_{\mathrm{B}}} d x y_{\mathrm{B}}+K_{2} \int_{y_{\mathrm{A}}}^{y_{\mathrm{B}}} d y x_{\mathrm{A}}=K_{1} y_{\mathrm{B}}\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)+K_{2} x_{\mathrm{A}}\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) . \tag{2.9}
\end{align*}
$$

Note that in general $W^{(\mathrm{I})} \neq W^{(\mathrm{III})}$. Thus, if we start at point A, the kinetic energy at point B will depend on the path taken, since the work done is path-dependent.

The difference between the work done along the two paths is

$$
\begin{equation*}
W^{(\mathrm{I})}-W^{(\mathrm{II})}=\left(K_{2}-K_{1}\right)\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) . \tag{2.10}
\end{equation*}
$$

Thus, we see that if $K_{1}=K_{2}$, the work is the same for the two paths. In fact, if $K_{1}=K_{2}$, the work would be path-independent, and would depend only on the endpoints. This is true for any path, and not just piecewise linear paths of the type depicted in fig. 2.1. The reason for this is Stokes' theorem:

$$
\begin{equation*}
\oint_{\partial \mathcal{C}} d \boldsymbol{\ell} \cdot \boldsymbol{F}=\int_{\mathcal{C}} d S \hat{\boldsymbol{n}} \cdot \nabla \times \boldsymbol{F} . \tag{2.11}
\end{equation*}
$$

Here, \mathcal{C} is a connected region in three-dimensional space, $\partial \mathcal{C}$ is mathematical notation for the boundary of \mathcal{C}, which is a closed path ${ }^{1}$, $d S$ is the scalar differential area element, $\hat{\boldsymbol{n}}$ is the unit normal to that differential area element, and $\boldsymbol{\nabla} \times \boldsymbol{F}$ is the curl of \boldsymbol{F} :

$$
\begin{align*}
\boldsymbol{\nabla} \times \boldsymbol{F} & =\operatorname{det}\left(\begin{array}{lll}
\hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right) \\
& =\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \hat{\boldsymbol{x}}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \hat{\boldsymbol{y}}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \hat{\boldsymbol{z}} . \tag{2.12}
\end{align*}
$$

For the force under consideration, $\boldsymbol{F}(\boldsymbol{r})=K_{1} y \hat{\boldsymbol{x}}+K_{2} x \hat{\boldsymbol{y}}$, the curl is

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{F}=\left(K_{2}-K_{1}\right) \hat{\boldsymbol{z}}, \tag{2.13}
\end{equation*}
$$

which is a constant. The RHS of eqn. 2.11 is then simply proportional to the area enclosed by \mathcal{C}. When we compute the work difference in eqn. 2.10, we evaluate the integral $\oint d \boldsymbol{\ell} \cdot \boldsymbol{F}$ along the path $\gamma_{\text {II }}^{-1} \circ \gamma_{\mathrm{I}}$, which is to say path I followed by the inverse of path II. In this case, $\hat{\boldsymbol{n}}=\hat{\boldsymbol{z}}$ and the integral of $\hat{\boldsymbol{n}} \cdot \boldsymbol{\nabla} \times \boldsymbol{F}$ over the rectangle \mathcal{C} is given by the RHS of eqn. 2.10.

When $\boldsymbol{\nabla} \times \boldsymbol{F}=0$ everywhere in space, we can always write $\boldsymbol{F}=-\boldsymbol{\nabla} U$, where $U(\boldsymbol{r})$ is the potential energy. Such forces are called conservative forces because the total energy of the system, $E=T+U$, is then conserved during its motion. We can see this by evaluating the work done,

$$
\begin{align*}
W^{(\mathrm{A} \rightarrow \mathrm{~B})} & =\int_{r_{\mathrm{A}}}^{r_{\mathrm{B}}} d \boldsymbol{r} \cdot \boldsymbol{F}(\boldsymbol{r}) \\
& =-\int_{r_{\mathrm{A}}}^{r_{\mathrm{B}}} d \boldsymbol{r} \cdot \boldsymbol{\nabla} U \\
& =U\left(\boldsymbol{r}_{\mathrm{A}}\right)-U\left(\boldsymbol{r}_{\mathrm{B}}\right) . \tag{2.14}
\end{align*}
$$

[^0]The work-energy theorem then gives

$$
\begin{equation*}
T^{(\mathrm{B})}-T^{(\mathrm{A})}=U\left(\boldsymbol{r}_{\mathrm{A}}\right)-U\left(\boldsymbol{r}_{\mathrm{B}}\right), \tag{2.15}
\end{equation*}
$$

which says

$$
\begin{equation*}
E^{(\mathrm{B})}=T^{(\mathrm{B})}+U\left(\boldsymbol{r}_{\mathrm{B}}\right)=T^{(\mathrm{A})}+U\left(\boldsymbol{r}_{\mathrm{A}}\right)=E^{(\mathrm{A})} . \tag{2.16}
\end{equation*}
$$

Thus, the total energy $E=T+U$ is conserved.

2.2.1 Example : integrating $\boldsymbol{F}=-\nabla U$

If $\boldsymbol{\nabla} \times \boldsymbol{F}=0$, we can compute $U(\boldsymbol{r})$ by integrating, viz.

$$
\begin{equation*}
U(\boldsymbol{r})=U(\mathbf{0})-\int_{0}^{r} d \boldsymbol{r}^{\prime} \cdot \boldsymbol{F}\left(\boldsymbol{r}^{\prime}\right) \tag{2.17}
\end{equation*}
$$

The integral does not depend on the path chosen connecting $\mathbf{0}$ and \boldsymbol{r}. For example, we can take

$$
\begin{equation*}
U(x, y, z)=U(0,0,0)-\int_{(0,0,0)}^{(x, 0,0)} d x^{\prime} F_{x}\left(x^{\prime}, 0,0\right)-\int_{(x, 0,0)}^{(x, y, 0)} d y^{\prime} F_{y}\left(x, y^{\prime}, 0\right)-\int_{(z, y, 0)}^{(x, y, z)} d z^{\prime} F_{z}\left(x, y, z^{\prime}\right) . \tag{2.18}
\end{equation*}
$$

The constant $U(0,0,0)$ is arbitrary and impossible to determine from \boldsymbol{F} alone.
As an example, consider the force

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{r})=-k y \hat{\boldsymbol{x}}-k x \hat{\boldsymbol{y}}-4 b z^{3} \hat{\boldsymbol{z}}, \tag{2.19}
\end{equation*}
$$

where k and b are constants. We have

$$
\begin{align*}
& (\boldsymbol{\nabla} \times \boldsymbol{F})_{x}=\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right)=0 \tag{2.20}\\
& (\boldsymbol{\nabla} \times \boldsymbol{F})_{y}=\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right)=0 \tag{2.21}\\
& (\boldsymbol{\nabla} \times \boldsymbol{F})_{z}=\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right)=0 \tag{2.22}
\end{align*}
$$

so $\boldsymbol{\nabla} \times \boldsymbol{F}=0$ and \boldsymbol{F} must be expressible as $\boldsymbol{F}=-\boldsymbol{\nabla} U$. Integrating using eqn. 2.18, we have

$$
\begin{align*}
U(x, y, z) & =U(0,0,0)+\int_{(0,0,0)}^{(x, 0,0)} d x^{\prime} k \cdot 0+\int_{(x, 0,0)}^{(x, y, 0)} d y^{\prime} k x y^{\prime}+\int_{(z, y, 0)}^{(x, y, z)} d z^{\prime} 4 b z^{\prime 3} \tag{2.23}\\
& =U(0,0,0)+k x y+b z^{4} . \tag{2.24}
\end{align*}
$$

Another approach is to integrate the partial differential equation $\boldsymbol{\nabla} U=-\boldsymbol{F}$. This is in fact three equations, and we shall need all of them to obtain the correct answer. We start with the $\hat{\boldsymbol{x}}$-component,

$$
\begin{equation*}
\frac{\partial U}{\partial x}=k y \tag{2.25}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{equation*}
U(x, y, z)=k x y+f(y, z), \tag{2.26}
\end{equation*}
$$

where $f(y, z)$ is at this point an arbitrary function of y and z. The important thing is that it has no x-dependence, so $\partial f / \partial x=0$. Next, we have

$$
\begin{equation*}
\frac{\partial U}{\partial y}=k x \quad \Longrightarrow \quad U(x, y, z)=k x y+g(x, z) \tag{2.27}
\end{equation*}
$$

Finally, the z-component integrates to yield

$$
\begin{equation*}
\frac{\partial U}{\partial z}=4 b z^{3} \quad \Longrightarrow \quad U(x, y, z)=b z^{4}+h(x, y) \tag{2.28}
\end{equation*}
$$

We now equate the first two expressions:

$$
\begin{equation*}
k x y+f(y, z)=k x y+g(x, z) . \tag{2.29}
\end{equation*}
$$

Subtracting $k x y$ from each side, we obtain the equation $f(y, z)=g(x, z)$. Since the LHS is independent of x and the RHS is independent of y, we must have

$$
\begin{equation*}
f(y, z)=g(x, z)=q(z), \tag{2.30}
\end{equation*}
$$

where $q(z)$ is some unknown function of z. But now we invoke the final equation, to obtain

$$
\begin{equation*}
b z^{4}+h(x, y)=k x y+q(z) . \tag{2.31}
\end{equation*}
$$

The only possible solution is $h(x, y)=C+k x y$ and $q(z)=C+b z^{4}$, where C is a constant. Therefore,

$$
\begin{equation*}
U(x, y, z)=C+k x y+b z^{4} . \tag{2.32}
\end{equation*}
$$

Note that it would be very wrong to integrate $\partial U / \partial x=k y$ and obtain $U(x, y, z)=k x y+$ C^{\prime}, where C^{\prime} is a constant. As we've seen, the 'constant of integration' we obtain upon integrating this first order PDE is in fact a function of y and z. The fact that $f(y, z)$ carries no explicit x dependence means that $\partial f / \partial x=0$, so by construction $U=k x y+f(y, z)$ is a solution to the $\operatorname{PDE} \partial U / \partial x=k y$, for any arbitrary function $f(y, z)$.

2.3 Conservative Forces in Many Particle Systems

$$
\begin{align*}
T & =\sum_{i} \frac{1}{2} m_{i} \dot{\boldsymbol{r}}_{i}^{2} \tag{2.33}\\
U & =\sum_{i} V\left(\boldsymbol{r}_{i}\right)+\sum_{i<j} v\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right) . \tag{2.34}
\end{align*}
$$

Here, $V(\boldsymbol{r})$ is the external (or one-body) potential, and $v\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$ is the interparticle potential, which we assume to be central, depending only on the distance between any pair of particles. The equations of motion are

$$
\begin{equation*}
m_{i} \ddot{\boldsymbol{r}}_{i}=\boldsymbol{F}_{i}^{(\mathrm{ext})}+\boldsymbol{F}_{i}^{(\mathrm{int})} \tag{2.35}
\end{equation*}
$$

with

$$
\begin{align*}
\boldsymbol{F}_{i}^{(\text {ext })} & =-\frac{\partial V\left(\boldsymbol{r}_{i}\right)}{\partial \boldsymbol{r}_{i}} \tag{2.36}\\
\boldsymbol{F}_{i}^{(\mathrm{int})} & =-\sum_{j} \frac{\partial v\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)}{\boldsymbol{r}_{i}} \equiv \sum_{j} \boldsymbol{F}_{i j}^{(\mathrm{int})} . \tag{2.37}
\end{align*}
$$

Here, $\boldsymbol{F}_{i j}^{(\text {int })}$ is the force exerted on particle i by particle j :

$$
\begin{equation*}
\boldsymbol{F}_{i j}^{(\text {int })}=-\frac{\partial v\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)}{\partial \boldsymbol{r}_{i}}=-\frac{\boldsymbol{r}_{i}-\boldsymbol{r}_{j}}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|} v^{\prime}\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right) . \tag{2.38}
\end{equation*}
$$

Note that $\boldsymbol{F}_{i j}^{\text {(int) }}=-\boldsymbol{F}_{j i}^{\text {(int) }}$, otherwise known as Newton's Third Law. It is convenient to abbreviate $\boldsymbol{r}_{i j} \equiv \boldsymbol{r}_{i}-\boldsymbol{r}_{j}$, in which case we may write the interparticle force as

$$
\begin{equation*}
\boldsymbol{F}_{i j}^{(\mathrm{int})}=-\hat{\boldsymbol{r}}_{i j} v^{\prime}\left(r_{i j}\right) . \tag{2.39}
\end{equation*}
$$

2.4 Linear and Angular Momentum

Consider now the total momentum of the system, $\boldsymbol{P}=\sum_{i} \boldsymbol{p}_{i}$. Its rate of change is

$$
\begin{equation*}
\frac{d \boldsymbol{P}}{d t}=\sum_{i} \dot{\boldsymbol{p}}_{i}=\sum_{i} \boldsymbol{F}_{i}^{(\text {ext })}+\overbrace{\sum_{i \neq j} \boldsymbol{F}_{i j}^{(\text {int })}}^{\boldsymbol{F}_{i j}^{(\text {int })}+\boldsymbol{F}_{j \text { (int })}}=0 . \tag{2.40}
\end{equation*}
$$

since the sum over all internal forces cancels as a result of Newton's Third Law. We write

$$
\begin{align*}
\boldsymbol{P} & =\sum_{i} m_{i} \dot{\boldsymbol{r}}_{i}=M \dot{\boldsymbol{R}} \tag{2.41}\\
M & =\sum_{i} m_{i} \quad(\text { total mass }) \tag{2.42}\\
\boldsymbol{R} & =\frac{\sum_{i} m_{i} \boldsymbol{r}_{i}}{\sum_{i} m_{i}} \quad \text { (center-of-mass) } . \tag{2.43}
\end{align*}
$$

Next, consider the total angular momentum,

$$
\begin{equation*}
\boldsymbol{L}=\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{p}_{i}=\sum_{i} m_{i} \boldsymbol{r}_{i} \times \dot{\boldsymbol{r}}_{i} . \tag{2.44}
\end{equation*}
$$

The rate of change of \boldsymbol{L} is then

$$
\begin{align*}
\frac{d \boldsymbol{L}}{d t} & =\sum_{i}\left\{m_{i} \dot{\boldsymbol{r}}_{i} \times \dot{\boldsymbol{r}}_{i}+m_{i} \boldsymbol{r}_{i} \times \ddot{\boldsymbol{r}}_{i}\right\} \\
& =\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{F}_{i}^{(\mathrm{ext})}+\sum_{i \neq j} \boldsymbol{r}_{i} \times \boldsymbol{F}_{i j}^{(\text {int })} \\
& =\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{F}_{i}^{(\text {ext })}+\overbrace{\frac{1}{2} \sum_{i \neq j}\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right) \times \boldsymbol{F}_{i j}^{(\text {int })}}^{r_{i j} \times \boldsymbol{F}_{i j}^{(\text {int })}=0} \\
& =\boldsymbol{N}_{\text {tot }}^{(\text {ext })} \tag{2.45}
\end{align*}
$$

Finally, it is useful to establish the result

$$
\begin{equation*}
T=\frac{1}{2} \sum_{i} m_{i} \dot{\boldsymbol{r}}_{i}^{2}=\frac{1}{2} M \dot{\boldsymbol{R}}^{2}+\frac{1}{2} \sum_{i} m_{i}\left(\dot{\boldsymbol{r}}_{i}-\dot{\boldsymbol{R}}\right)^{2}, \tag{2.46}
\end{equation*}
$$

which says that the kinetic energy may be written as a sum of two terms, those being the kinetic energy of the center-of-mass motion, and the kinetic energy of the particles relative to the center-of-mass.

Recall the "work-energy theorem" for conservative systems,

$$
\begin{align*}
0 & =\int_{\text {initial }}^{\text {final }} d E=\int_{\text {initial }}^{\text {final }} d T+\int_{\text {initial }}^{\text {final }} d U \tag{2.47}\\
& =T^{(\mathrm{B})}-T^{(\mathrm{A})}-\sum_{i} \int_{i} d \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i},
\end{align*}
$$

which is to say

$$
\begin{equation*}
\Delta T=T^{(\mathrm{B})}-T^{(\mathrm{A})}=\sum_{i} \int d \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i}=-\Delta U . \tag{2.48}
\end{equation*}
$$

In other words, the total energy $E=T+U$ is conserved:

$$
\begin{equation*}
E=\sum_{i} \frac{1}{2} m_{i} \dot{\boldsymbol{r}}_{i}^{2}+\sum_{i} V\left(\boldsymbol{r}_{i}\right)+\sum_{i<j} v\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right) . \tag{2.49}
\end{equation*}
$$

Note that for continuous systems, we replace sums by integrals over a mass distribution, viz.

$$
\begin{equation*}
\sum_{i} m_{i} \phi\left(\boldsymbol{r}_{i}\right) \longrightarrow \int d^{3} r \rho(\boldsymbol{r}) \phi(\boldsymbol{r}), \tag{2.50}
\end{equation*}
$$

where $\rho(\boldsymbol{r})$ is the mass density, and $\phi(\boldsymbol{r})$ is any function.

2.5 Scaling of Solutions for Homogeneous Potentials

2.5.1 Euler's theorem for homogeneous functions

In certain cases of interest, the potential is a homogeneous function of the coordinates. This means

$$
\begin{equation*}
U\left(\lambda \boldsymbol{r}_{1}, \ldots, \lambda \boldsymbol{r}_{N}\right)=\lambda^{k} U\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right) \tag{2.51}
\end{equation*}
$$

Here, k is the degree of homogeneity of U. Familiar examples include gravity,

$$
\begin{equation*}
U\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=-G \sum_{i<j} \frac{m_{i} m_{j}}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|} \quad ; \quad k=-1, \tag{2.52}
\end{equation*}
$$

and the harmonic oscillator,

$$
\begin{equation*}
U\left(q_{1}, \ldots, q_{n}\right)=\frac{1}{2} \sum_{\sigma, \sigma^{\prime}} V_{\sigma \sigma^{\prime}} q_{\sigma} q_{\sigma^{\prime}} \quad ; \quad k=+2 . \tag{2.53}
\end{equation*}
$$

The sum of two homogeneous functions is itself homogeneous only if the component functions themselves are of the same degree of homogeneity. Homogeneous functions obey a special result known as Euler's Theorem, which we now prove. Suppose a multivariable function $H\left(x_{1}, \ldots, x_{n}\right)$ is homogeneous:

$$
\begin{equation*}
H\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)=\lambda^{k} H\left(x_{1}, \ldots, x_{n}\right) . \tag{2.54}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left.\frac{d}{d \lambda}\right|_{\lambda=1} H\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)=\sum_{i=1}^{n} x_{i} \frac{\partial H}{\partial x_{i}}=k H \tag{2.55}
\end{equation*}
$$

2.5.2 Scaled equations of motion

Now suppose the we rescale distances and times, defining

$$
\begin{equation*}
\boldsymbol{r}_{i}=\alpha \tilde{\boldsymbol{r}}_{i} \quad, \quad t=\beta \tilde{t} \tag{2.56}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d \boldsymbol{r}_{i}}{d t}=\frac{\alpha}{\beta} \frac{d \tilde{\boldsymbol{r}}_{i}}{d \tilde{t}} \quad, \quad \frac{d^{2} \boldsymbol{r}_{i}}{d t^{2}}=\frac{\alpha}{\beta^{2}} \frac{d^{2} \tilde{\boldsymbol{r}}_{i}}{d \tilde{t}^{2}} . \tag{2.57}
\end{equation*}
$$

The force \boldsymbol{F}_{i} is given by

$$
\begin{align*}
\boldsymbol{F}_{i} & =-\frac{\partial}{\partial \boldsymbol{r}_{i}} U\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right) \\
& =-\frac{\partial}{\partial\left(\alpha \tilde{\boldsymbol{r}}_{i}\right)} \alpha^{k} U\left(\tilde{\boldsymbol{r}}_{1}, \ldots, \tilde{\boldsymbol{r}}_{N}\right) \\
& =\alpha^{k-1} \tilde{\boldsymbol{F}}_{i} \tag{2.58}
\end{align*}
$$

Thus, Newton's 2nd Law says

$$
\begin{equation*}
\frac{\alpha}{\beta^{2}} m_{i} \frac{d^{2} \tilde{\boldsymbol{r}}_{i}}{d \tilde{t}^{2}}=\alpha^{k-1} \tilde{\boldsymbol{F}}_{i} . \tag{2.59}
\end{equation*}
$$

If we choose β such that
We now demand

$$
\begin{equation*}
\frac{\alpha}{\beta^{2}}=\alpha^{k-1} \quad \Rightarrow \quad \beta=\alpha^{1-\frac{1}{2} k} \tag{2.60}
\end{equation*}
$$

then the equation of motion is invariant under the rescaling transformation! This means that if $\boldsymbol{r}(t)$ is a solution to the equations of motion, then so is $\alpha \boldsymbol{r}\left(\alpha^{\frac{1}{2} k-1} t\right)$. This gives us an entire one-parameter family of solutions, for all real positive α.
If $\boldsymbol{r}(t)$ is periodic with period T, the $\boldsymbol{r}_{i}(t ; \alpha)$ is periodic with period $T^{\prime}=\alpha^{1-\frac{1}{2} k} T$. Thus,

$$
\begin{equation*}
\left(\frac{T^{\prime}}{T}\right)=\left(\frac{L^{\prime}}{L}\right)^{1-\frac{1}{2} k} \tag{2.61}
\end{equation*}
$$

Here, $\alpha=L^{\prime} / L$ is the ratio of length scales. Velocities, energies and angular momenta scale accordingly:

$$
\begin{array}{lll}
{[v]=\frac{L}{T}} & \Rightarrow & \frac{v^{\prime}}{v}=\frac{L^{\prime}}{L} / \frac{T^{\prime}}{T}=\alpha^{\frac{1}{2} k} \\
{[E]=\frac{M L^{2}}{T^{2}}} & \Rightarrow & \frac{E^{\prime}}{E}=\left(\frac{L^{\prime}}{L}\right)^{2} /\left(\frac{T^{\prime}}{T}\right)^{2}=\alpha^{k} \\
{[\boldsymbol{L}]=\frac{M L^{2}}{T}} & \Rightarrow & \frac{\left|\boldsymbol{L}^{\prime}\right|}{|\boldsymbol{L}|}=\left(\frac{L^{\prime}}{L}\right)^{2} / \frac{T^{\prime}}{T}=\alpha^{\left(1+\frac{1}{2} k\right)} \tag{2.64}
\end{array}
$$

As examples, consider:
(i) Harmonic Oscillator: Here $k=2$ and therefore

$$
\begin{equation*}
q_{\sigma}(t) \longrightarrow q_{\sigma}(t ; \alpha)=\alpha q_{\sigma}(t) \tag{2.65}
\end{equation*}
$$

Thus, rescaling lengths alone gives another solution.
(ii) Kepler Problem : This is gravity, for which $k=-1$. Thus,

$$
\begin{equation*}
\boldsymbol{r}(t) \longrightarrow \boldsymbol{r}(t ; \alpha)=\alpha \boldsymbol{r}\left(\alpha^{-3 / 2} t\right) \tag{2.66}
\end{equation*}
$$

Thus, $r^{3} \propto t^{2}$, i.e.

$$
\begin{equation*}
\left(\frac{L^{\prime}}{L}\right)^{3}=\left(\frac{T^{\prime}}{T}\right)^{2} \tag{2.67}
\end{equation*}
$$

also known as Kepler's Third Law.

2.6 Appendix I : Curvilinear Orthogonal Coordinates

The standard cartesian coordinates are $\left\{x_{1}, \ldots, x_{d}\right\}$, where d is the dimension of space. Consider a different set of coordinates, $\left\{q_{1}, \ldots, q_{d}\right\}$, which are related to the original coordinates x_{μ} via the d equations

$$
\begin{equation*}
q_{\mu}=q_{\mu}\left(x_{1}, \ldots, x_{d}\right) . \tag{2.68}
\end{equation*}
$$

In general these are nonlinear equations.
Let $\hat{\boldsymbol{e}}_{i}^{0}=\hat{\boldsymbol{x}}_{i}$ be the Cartesian set of orthonormal unit vectors, and define $\hat{\boldsymbol{e}}_{\mu}$ to be the unit vector perpendicular to the surface $d q_{\mu}=0$. A differential change in position can now be described in both coordinate systems:

$$
\begin{equation*}
d \boldsymbol{s}=\sum_{i=1}^{d} \hat{\boldsymbol{e}}_{i}^{0} d x_{i}=\sum_{\mu=1}^{d} \hat{\boldsymbol{e}}_{\mu} h_{\mu}(q) d q_{\mu}, \tag{2.69}
\end{equation*}
$$

where each $h_{\mu}(q)$ is an as yet unknown function of all the components q_{ν}. Finding the coefficient of $d q_{\mu}$ then gives

$$
\begin{equation*}
h_{\mu}(q) \hat{\boldsymbol{e}}_{\mu}=\sum_{i=1}^{d} \frac{\partial x_{i}}{\partial q_{\mu}} \hat{\boldsymbol{e}}_{i}^{0} \quad \Rightarrow \quad \hat{\boldsymbol{e}}_{\mu}=\sum_{i=1}^{d} M_{\mu i} \hat{\boldsymbol{e}}_{i}^{0} \tag{2.70}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\mu i}(q)=\frac{1}{h_{\mu}(q)} \frac{\partial x_{i}}{\partial q_{\mu}} . \tag{2.71}
\end{equation*}
$$

The dot product of unit vectors in the new coordinate system is then

$$
\begin{equation*}
\hat{\boldsymbol{e}}_{\mu} \cdot \hat{\boldsymbol{e}}_{\nu}=\left(M M^{\mathrm{t}}\right)_{\mu \nu}=\frac{1}{h_{\mu}(q) h_{\nu}(q)} \sum_{i=1}^{d} \frac{\partial x_{i}}{\partial q_{\mu}} \frac{\partial x_{i}}{\partial q_{\nu}} . \tag{2.72}
\end{equation*}
$$

The condition that the new basis be orthonormal is then

$$
\begin{equation*}
\sum_{i=1}^{d} \frac{\partial x_{i}}{\partial q_{\mu}} \frac{\partial x_{i}}{\partial q_{\nu}}=h_{\mu}^{2}(q) \delta_{\mu \nu} . \tag{2.73}
\end{equation*}
$$

This gives us the relation

$$
\begin{equation*}
h_{\mu}(q)=\sqrt{\sum_{i=1}^{d}\left(\frac{\partial x_{i}}{\partial q_{\mu}}\right)^{2}} . \tag{2.74}
\end{equation*}
$$

Note that

$$
\begin{equation*}
(d \boldsymbol{s})^{2}=\sum_{\mu=1}^{d} h_{\mu}^{2}(q)\left(d q_{\mu}\right)^{2} . \tag{2.75}
\end{equation*}
$$

For general coordinate systems, which are not necessarily orthogonal, we have

$$
\begin{equation*}
(d s)^{2}=\sum_{\mu, \nu=1}^{d} g_{\mu \nu}(q) d q_{\mu} d q_{\nu} \tag{2.76}
\end{equation*}
$$

where $g_{\mu \nu}(q)$ is a real, symmetric, positive definite matrix called the metric tensor.

Figure 2.2: Volume element Ω for computing divergences.

2.6.1 Example : spherical coordinates

Consider spherical coordinates (ρ, θ, ϕ) :

$$
\begin{equation*}
x=\rho \sin \theta \cos \phi \quad, \quad y=\rho \sin \theta \sin \phi \quad, \quad z=\rho \cos \theta . \tag{2.77}
\end{equation*}
$$

It is now a simple matter to derive the results

$$
\begin{equation*}
h_{\rho}^{2}=1 \quad, \quad h_{\theta}^{2}=\rho^{2} \quad, \quad h_{\phi}^{2}=\rho^{2} \sin ^{2} \theta . \tag{2.78}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
d \boldsymbol{s}=\hat{\boldsymbol{\rho}} d \rho+\rho \hat{\boldsymbol{\theta}} d \theta+\rho \sin \theta \hat{\boldsymbol{\phi}} d \phi . \tag{2.79}
\end{equation*}
$$

2.6.2 Vector calculus : grad, div, curl

Here we restrict our attention to $d=3$. The gradient ∇U of a function $U(q)$ is defined by

$$
\begin{align*}
d U & =\frac{\partial U}{\partial q_{1}} d q_{1}+\frac{\partial U}{\partial q_{2}} d q_{2}+\frac{\partial U}{\partial q_{3}} d q_{3} \\
& \equiv \nabla U \cdot d s . \tag{2.80}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\boldsymbol{\nabla}=\frac{\hat{e}_{1}}{h_{1}(q)} \frac{\partial}{\partial q_{1}}+\frac{\hat{e}_{2}}{h_{2}(q)} \frac{\partial}{\partial q_{2}}+\frac{\hat{e}_{3}}{h_{3}(q)} \frac{\partial}{\partial q_{3}} . \tag{2.81}
\end{equation*}
$$

For the divergence, we use the divergence theorem, and we appeal to fig. 2.2:

$$
\begin{equation*}
\int_{\Omega} d V \boldsymbol{\nabla} \cdot \boldsymbol{A}=\int_{\partial \Omega} d S \hat{\boldsymbol{n}} \cdot \boldsymbol{A} \tag{2.82}
\end{equation*}
$$

where Ω is a region of three-dimensional space and $\partial \Omega$ is its closed two-dimensional boundary. The LHS of this equation is

$$
\begin{equation*}
\text { LHS }=\boldsymbol{\nabla} \cdot \boldsymbol{A} \cdot\left(h_{1} d q_{1}\right)\left(h_{2} d q_{2}\right)\left(h_{3} d q_{3}\right) . \tag{2.83}
\end{equation*}
$$

The RHS is

$$
\begin{align*}
\text { RHS } & =\left.A_{1} h_{2} h_{3}\right|_{q_{1}} ^{q_{1}+d q_{1}} d q_{2} d q_{3}+\left.A_{2} h_{1} h_{3}\right|_{q_{2}} ^{q_{2}+d q_{2}} d q_{1} d q_{3}+\left.A_{3} h_{1} h_{2}\right|_{q_{3}} ^{q_{1}+d q_{3}} d q_{1} d q_{2} \\
& =\left[\frac{\partial}{\partial q_{1}}\left(A_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial q_{2}}\left(A_{2} h_{1} h_{3}\right)+\frac{\partial}{\partial q_{3}}\left(A_{3} h_{1} h_{2}\right)\right] d q_{1} d q_{2} d q_{3} . \tag{2.84}
\end{align*}
$$

We therefore conclude

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(A_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial q_{2}}\left(A_{2} h_{1} h_{3}\right)+\frac{\partial}{\partial q_{3}}\left(A_{3} h_{1} h_{2}\right)\right] \tag{2.85}
\end{equation*}
$$

To obtain the curl $\boldsymbol{\nabla} \times \boldsymbol{A}$, we use Stokes' theorem again,

$$
\begin{equation*}
\int_{\Sigma} d S \hat{\boldsymbol{n}} \cdot \boldsymbol{\nabla} \times \boldsymbol{A}=\oint_{\partial \Sigma} d \boldsymbol{\ell} \cdot \boldsymbol{A} \tag{2.86}
\end{equation*}
$$

where Σ is a two-dimensional region of space and $\partial \Sigma$ is its one-dimensional boundary. Now consider a differential surface element satisfying $d q_{1}=0$, i.e. a rectangle of side lengths $h_{2} d q_{2}$ and $h_{3} d q_{3}$. The LHS of the above equation is

$$
\begin{equation*}
\text { LHS }=\hat{\boldsymbol{e}}_{1} \cdot \boldsymbol{\nabla} \times \boldsymbol{A}\left(h_{2} d q_{2}\right)\left(h_{3} d q_{3}\right) . \tag{2.87}
\end{equation*}
$$

The RHS is

$$
\begin{align*}
\mathrm{RHS} & =\left.A_{3} h_{3}\right|_{q_{2}} ^{q_{2}+d q_{2}} d q_{3}-\left.A_{2} h_{2}\right|_{q_{3}} ^{q_{3}+d q_{3}} d q_{2} \\
& =\left[\frac{\partial}{\partial q_{2}}\left(A_{3} h_{3}\right)-\frac{\partial}{\partial q_{3}}\left(A_{2} h_{2}\right)\right] d q_{2} d q_{3} . \tag{2.88}
\end{align*}
$$

Therefore

$$
\begin{equation*}
(\boldsymbol{\nabla} \times \boldsymbol{A})_{1}=\frac{1}{h_{2} h_{3}}\left(\frac{\partial\left(h_{3} A_{3}\right)}{\partial q_{2}}-\frac{\partial\left(h_{2} A_{2}\right)}{\partial q_{3}}\right) . \tag{2.89}
\end{equation*}
$$

This is one component of the full result

$$
\boldsymbol{\nabla} \times \boldsymbol{A}=\frac{1}{h_{1} h_{2} h_{2}} \operatorname{det}\left(\begin{array}{ccc}
h_{1} \hat{e}_{1} & h_{2} \hat{e}_{2} & h_{3} \hat{e}_{3} \tag{2.90}\\
\frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\
h_{1} A_{1} & h_{2} A_{2} & h_{3} A_{3}
\end{array}\right) .
$$

The Laplacian of a scalar function U is given by

$$
\begin{align*}
\nabla^{2} U & =\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} U \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left\{\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial U}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial U}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial U}{\partial q_{3}}\right)\right\} . \tag{2.91}
\end{align*}
$$

2.7 Common curvilinear orthogonal systems

2.7.1 Rectangular coordinates

In rectangular coordinates (x, y, z), we have

$$
\begin{equation*}
h_{x}=h_{y}=h_{z}=1 . \tag{2.92}
\end{equation*}
$$

Thus

$$
\begin{equation*}
d s=\hat{\boldsymbol{x}} d x+\hat{\boldsymbol{y}} d y+\hat{\boldsymbol{z}} d z \tag{2.93}
\end{equation*}
$$

and the velocity squared is

$$
\begin{equation*}
\dot{s}^{2}=\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2} \tag{2.94}
\end{equation*}
$$

The gradient is

$$
\begin{equation*}
\nabla U=\hat{\boldsymbol{x}} \frac{\partial U}{\partial x}+\hat{\boldsymbol{y}} \frac{\partial U}{\partial y}+\hat{\boldsymbol{z}} \frac{\partial U}{\partial z} . \tag{2.95}
\end{equation*}
$$

The divergence is

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} . \tag{2.96}
\end{equation*}
$$

The curl is

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\boldsymbol{x}}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\boldsymbol{y}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\boldsymbol{z}} . \tag{2.97}
\end{equation*}
$$

The Laplacian is

$$
\begin{equation*}
\nabla^{2} U=\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}} \tag{2.98}
\end{equation*}
$$

2.7.2 Cylindrical coordinates

In cylindrical coordinates (ρ, ϕ, z), we have

$$
\begin{array}{lll}
\hat{\boldsymbol{\rho}}=\hat{\boldsymbol{x}} \cos \phi+\hat{\boldsymbol{y}} \sin \phi & \hat{\boldsymbol{x}}=\hat{\boldsymbol{\rho}} \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi & d \hat{\boldsymbol{\rho}}=\hat{\boldsymbol{\phi}} d \phi \\
\hat{\boldsymbol{\phi}}=-\hat{\boldsymbol{x}} \sin \phi+\hat{\boldsymbol{y}} \cos \phi & \hat{\boldsymbol{y}}=\hat{\boldsymbol{\rho}} \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi & d \hat{\boldsymbol{\phi}}=-\hat{\boldsymbol{\rho}} d \phi . \tag{2.100}
\end{array}
$$

The metric is given in terms of

$$
\begin{equation*}
h_{\rho}=1 \quad, \quad h_{\phi}=\rho \quad, \quad h_{z}=1 . \tag{2.101}
\end{equation*}
$$

Thus

$$
\begin{equation*}
d s=\hat{\boldsymbol{\rho}} d \rho+\hat{\boldsymbol{\phi}} \rho d \phi+\hat{\boldsymbol{z}} d z \tag{2.102}
\end{equation*}
$$

and the velocity squared is

$$
\begin{equation*}
\dot{s}^{2}=\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2} . \tag{2.103}
\end{equation*}
$$

The gradient is

$$
\begin{equation*}
\nabla U=\hat{\rho} \frac{\partial U}{\partial \rho}+\frac{\hat{\phi}}{\rho} \frac{\partial U}{\partial \phi}+\hat{z} \frac{\partial U}{\partial z} \tag{2.104}
\end{equation*}
$$

The divergence is

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{1}{\rho} \frac{\partial\left(\rho A_{\rho}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z} . \tag{2.105}
\end{equation*}
$$

The curl is

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{A}=\left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right) \hat{\boldsymbol{\rho}}+\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right) \hat{\boldsymbol{\phi}}+\left(\frac{1}{\rho} \frac{\partial\left(\rho A_{\phi}\right)}{\partial \rho}-\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial \phi}\right) \hat{\boldsymbol{z}} . \tag{2.106}
\end{equation*}
$$

The Laplacian is

$$
\begin{equation*}
\nabla^{2} U=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial U}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} U}{\partial \phi^{2}}+\frac{\partial^{2} U}{\partial z^{2}} . \tag{2.107}
\end{equation*}
$$

2.7.3 Spherical coordinates

In spherical coordinates (r, θ, ϕ), we have

$$
\begin{align*}
& \hat{\boldsymbol{r}}=\hat{\boldsymbol{x}} \sin \theta \cos \phi+\hat{\boldsymbol{y}} \sin \theta \sin \phi+\hat{\boldsymbol{z}} \sin \theta \tag{2.108}\\
& \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{x}} \cos \theta \cos \phi+\hat{\boldsymbol{y}} \cos \theta \sin \phi-\hat{\boldsymbol{z}} \cos \theta \tag{2.109}\\
& \hat{\boldsymbol{\phi}}=-\hat{\boldsymbol{x}} \sin \phi+\hat{\boldsymbol{y}} \cos \phi, \tag{2.110}
\end{align*}
$$

for which

$$
\begin{equation*}
\hat{r} \times \hat{\boldsymbol{\theta}}=\hat{\phi} \quad, \quad \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{r}} \quad, \quad \hat{\phi} \times \hat{r}=\hat{\boldsymbol{\theta}} . \tag{2.111}
\end{equation*}
$$

The inverse is

$$
\begin{align*}
\hat{\boldsymbol{x}} & =\hat{\boldsymbol{r}} \sin \theta \cos \phi+\hat{\boldsymbol{\theta}} \cos \theta \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \tag{2.112}\\
\hat{\boldsymbol{y}} & =\hat{\boldsymbol{r}} \sin \theta \sin \phi+\hat{\boldsymbol{\theta}} \cos \theta \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \tag{2.113}\\
\hat{\boldsymbol{z}} & =\hat{\boldsymbol{r}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta . \tag{2.114}
\end{align*}
$$

The differential relations are

$$
\begin{align*}
d \hat{\boldsymbol{r}} & =\hat{\boldsymbol{\theta}} d \theta+\sin \theta \hat{\boldsymbol{\phi}} d \phi \tag{2.115}\\
d \hat{\boldsymbol{\theta}} & =-\hat{\boldsymbol{r}} d \theta+\cos \theta \hat{\boldsymbol{\phi}} d \phi \tag{2.116}\\
d \hat{\boldsymbol{\phi}} & =-(\sin \theta \hat{\boldsymbol{r}}+\cos \theta \hat{\boldsymbol{\theta}}) d \phi \tag{2.117}
\end{align*}
$$

The metric is given in terms of

$$
\begin{equation*}
h_{r}=1 \quad, \quad h_{\theta}=r \quad, \quad h_{\phi}=r \sin \theta . \tag{2.118}
\end{equation*}
$$

Thus

$$
\begin{equation*}
d \boldsymbol{s}=\hat{\boldsymbol{r}} d r+\hat{\boldsymbol{\theta}} r d \theta+\hat{\boldsymbol{\phi}} r \sin \theta d \phi \tag{2.119}
\end{equation*}
$$

and the velocity squared is

$$
\begin{equation*}
\dot{s}^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2} . \tag{2.120}
\end{equation*}
$$

The gradient is

$$
\begin{equation*}
\nabla U=\hat{\boldsymbol{r}} \frac{\partial U}{\partial \rho}+\frac{\hat{\boldsymbol{\theta}}}{r} \frac{\partial U}{\partial \theta}+\frac{\hat{\boldsymbol{\phi}}}{r \sin \theta} \frac{\partial U}{\partial \phi} \tag{2.121}
\end{equation*}
$$

The divergence is

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} A_{r}\right)}{r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta A_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} . \tag{2.122}
\end{equation*}
$$

The curl is

$$
\begin{align*}
\boldsymbol{\nabla} \times \boldsymbol{A}=\frac{1}{r \sin \theta} & \left(\frac{\partial\left(\sin \theta A_{\phi}\right)}{\partial r}-\frac{\partial A_{\theta}}{\partial \phi}\right) \hat{\boldsymbol{r}}+\frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{\partial\left(r A_{\phi}\right)}{\partial r}\right) \hat{\boldsymbol{\theta}} \\
& +\frac{1}{r}\left(\frac{\partial\left(r A_{\theta}\right)}{\partial r}-\frac{\partial A_{r}}{\partial \theta}\right) \hat{\boldsymbol{\phi}} . \tag{2.123}
\end{align*}
$$

The Laplacian is

$$
\begin{equation*}
\nabla^{2} U=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial U}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial U}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} U}{\partial \phi^{2}} . \tag{2.124}
\end{equation*}
$$

2.7.4 Kinetic energy

Note the form of the kinetic energy of a point particle:

$$
\begin{array}{rlrl}
T=\frac{1}{2} m\left(\frac{d s}{d t}\right)^{2} & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) \\
& =\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}\right) & & (3 \mathrm{D} \text { Cartesian }) \\
& =\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2}\right) \\
& =\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right) & & (3 \mathrm{D} \text { cylar }) \\
\text { (3D polar }) .
\end{array}
$$

[^0]: ${ }^{1}$ If \mathcal{C} is multiply connected, then $\partial \mathcal{C}$ is a set of closed paths. For example, if \mathcal{C} is an annulus, $\partial \mathcal{C}$ is two circles, corresponding to the inner and outer boundaries of the annulus.

