
PHYSICS 110A : CLASSICAL MECHANICS
MIDTERM EXAM #1 SOLUTIONS

[1] A particle of mass m moves in the one-dimensional potential

U(x) = k
(

x2 − a2
)

e−x/a . (1)

(a) What are the dimensions of the constants k and a?

(b) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as x → ±∞.

(c) Sketch a representative set of phase curves. Identify any and all fix points, find their
energies, and classify them as either stable or unstable equilibria. Find the energy of each
and every separatrix.

(d) Find the frequency of small oscillations about the minimum of U(x).

Solution:

(a) Since
[

U
]

= ML2/T2 (energy), we have
[

k
]

= M/T2 and
[

a
]

= L.

(b) Clearly U(x) diverges to +∞ for x → −∞, and U(x) → 0 for x → +∞. Setting
U ′(x) = 0, we obtain the equation

U ′(x) = k

(

2x −
x2 − a2

a

)

e−x/a = 0 . (2)

For finite x there are two solutions:

x± =
(

1 ±
√

2
)

a . (3)

From the sketch, shown in fig. 1, it is clear that x− is a global minimum and x+ is a local
maximum.

(c) A set of phase curves is shown in fig. 2. There are two fixed points for finite x, located at
x = x±. The point x− is a local minimum for U(x), corresponding to a stable equilibrium.
The energy for this fixed point is

E− = U(x−) = −2
(
√

2 − 1
)

exp
(
√

2 − 1
)

ka2 ≈ −1.254 ka2 . (4)

The point x+ is a local maximum for U(x), corresponding to the only separatrix, depicted
as a red curve in fig. 2. The energy of the separatrix is

E+ = U(x+) = 2
(
√

2 + 1
)

exp
(

−
√

2 − 1
)

ka2 ≈ 0.4318 ka2 . (5)

(d) The frequency of small oscillations about the stable equilibrium x = x− is

ω =

√

U ′′(x
−
)

m
. (6)
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Figure 1: The potential U(x). Distances are here measured in units of a, and the potential
in units of ka2.

Figure 2: Phase curves for the potential U(x). The separatrix, at energy E+, is shown in
red.

Taking the derivative of U ′(x) above, we have

U ′′(x) = k

(

1 −
4x

a
+

x2

a2

)

e−x/a

= 2k

(

1 −
x

a

)

e−x/a −
U ′(x)

a
.

(7)

Thus,

ω = 23/4 exp

(
√

2 − 1

2

)

√

k

m
≈ 2.069

√

k

m
. (8)
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[2] Consider the electrical circuit depicted in fig. 3. The inductance is L = 1mH and the
capacitances are C1 = 100µF and C2 = 150µF. The system is forced by a time-dependent
voltage source V (t) = V0 cos(Ωt), where V0 = 8mV and Ω = 103 s−1. The charge Q1 on
the upper plate of capacitor C1 is found to lead the voltage source V (t) (i.e. the difference
in potential between the upper and lower termini of the source in the figure) by a phase
angle δ = π

4
. Recall the relevant MKS units:

1Ω = 1V · s /C , 1F = 1C /V , 1H = 1V · s2/C .

(a) The voltage drops across the two capacitors are the same. Use this fact to express Q1

in terms of the total charge Q = Q1 + Q2. Do the same for Q2.

(b) Write town the equation of motion for Q(t).

(c) What is the value of the resistance R?

(d) Find the current I(t) flowing through the resistor. Your expression should involve no
unknown quantities other than the time variable t.

Figure 3: The circuit for problem 2.

Solution:

(a) The voltage drop across the capacitors (from top to bottom) is Q1/C1 = Q2/C2. Thus,

Q1 =
C1 Q

C
1
+ C

2

, Q2 =
C2 Q

C
1
+ C

2

, (9)

where Q = Q1 + Q2.

(b) The voltage drop along the resistor, voltage source, and inductor is (from top to bottom)
RI−V (t)+Lİ . Equating this with the voltage drop across either capacitor gives the equation

L Q̈ + R Q̇ +
Q

C
= V (t) , (10)
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where C = C1 + C2 = 250µF, which happens to be the effective capacitance for C1 and C2

in parallel. Note that I = Q̇.

(c) Dividing by L, we have

Q̈ + 2β Q̇ + ω2
0 Q =

V (t)

L
, (11)

where β = R/2L is as yet unknown (since we are not given R), and ω0 = 1/
√

LC = 2000 s−1.
The solution for Q(t) is

Q(t) =
V0

L
· A cos(Ωt − δ) , (12)

where

A =
1

√

(Ω2 − ω2
0
)2 + 4β2Ω2

, δ = tan−1

(

2βΩ

ω2
0
− Ω2

)

. (13)

We are told that δ = π
4
, thus tan δ = 1, so we must have

β =
ω2

0 − Ω2

2Ω
= ω0 ·

1 − (Ω/ω0)
2

2Ω/ω0

= 1500 s−1 , (14)

since Ω/ω0 = 1

2
. We can now solve for R:

R = 2βL = 3000 s−1 · 1mH = 3Ω . (15)

(d) We have

I(t) = Q̇(t) = −
Ω V0

L
· A sin(Ωt − δ) . (16)

Note that

A =
1

ω2
0

·
1

√

[

1 −
(

Ω
ω

0

)2
]2

+
[

2β
ω

0

· Ω
ω

0

]2
(17)

and 1/Lω2
0 = C. Now Ω/ω0 = 1

2
and 2β/ω0 = 3

2
, so we find A = 2

3

√
2, and

I(t) = 4

3

√
2 sin

(

t [ms] + 3π
4

)

mA , (18)

where t [ms] = Ωt is the time in units of milliseconds.
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