Mechanics in $d=1$

$$
F=m a \Longrightarrow m \ddot{x}=-U^{\prime}(x)
$$

$E=\frac{1}{2} m \dot{x}^{2}+U(x)$ is conserved

$$
\frac{d x}{d t}= \pm \sqrt{\frac{2}{m}(E-U(x))}
$$

$U(x)=E \Longrightarrow x(E)$ a turning point
2 turning points $x_{ \pm}(E) \Rightarrow$ motion bounded 1 turning point $x_{*}(E) \Rightarrow$ motion unbounded period of bounded motion:

$$
\begin{aligned}
T(E) & =\sqrt{2 m} \int_{x_{-}(E)}^{x_{+}(E)} \frac{d x}{\sqrt{E-U(x)}}=m \frac{d \mathcal{A}}{d E} \\
\mathcal{A}(E) & =\oint_{E} v d x=\text { phase space area }
\end{aligned}
$$

$$
\text { Taylor's theorem: } f(x+a)=f(x)+f^{\prime}(x) a+\frac{1}{2} f^{\prime \prime}(x) a^{2}+\ldots=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x) a^{n}
$$

