
PHYSICS 110A : CLASSICAL MECHANICS
FALL 2007 FINAL EXAM SOLUTIONS

[1] Two masses and two springs are configured linearly and externally driven to rotate with
angular velocity ω about a fixed point on a horizontal surface, as shown in fig. 1. The
unstretched length of each spring is a.

Figure 1: Two masses and two springs rotate with angular velocity ω.

(a) Choose as generalized coordinates the radial distances r1,2 from the origin. Find the

Lagrangian L(r1, r2, ṙ1, ṙ2, t).
[5 points]

The Lagrangian is

L = 1
2m
(
ṙ21 + ṙ22 + ω2 r21 + ω2 r22

)
− 1

2k (r1 − a)2 − 1
2k (r2 − r1 − a)2 . (1)

(b) Derive expressions for all conserved quantities.
[5 points]

The Hamiltonian is conserved. Since the kinetic energy is not homogeneous of degree 2 in
the generalized velocities, H 6= T + U . Rather,

H =
∑

σ

pσ q̇σ − L (2)

= 1
2m
(
ṙ21 + ṙ22

)
− 1

2mω
2
(
r21 + r22) + 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 . (3)

We could define an effective potential

Ueff(r1, r2) = −1
2mω

2
(
r21 + r22) + 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 . (4)

Note the first term, which comes from the kinetic energy, has an interpretation of a fictitious
potential which generates a centrifugal force.
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(c) What equations determine the equilibrium radii r01 and r02? (You do not have to solve
these equations.)
[5 points]

The equations of equilibrium are Fσ = 0. Thus,

0 = F1 =
∂L

∂r1
= mω2r1 − k (r1 − a) + k (r2 − r1 − a) (5)

0 = F2 =
∂L

∂r2
= mω2r2 − k (r2 − r1 − a) . (6)

(d) Suppose now that the system is not externally driven, and that the angular coordinate
φ is a dynamical variable like r1 and r2. Find the Lagrangian L(r1, r2, φ, ṙ1, ṙ2, φ̇, t).
[5 points]

Now we have

L = 1
2m
(
ṙ21 + ṙ22 + r21 φ̇

2 + r22 φ̇
2
)
− 1

2k (r1 − a)2 − 1
2k (r2 − r1 − a)2 . (7)

(e) For the system described in part (d), find expressions for all conserved quantities.
[5 points]

There are two conserved quantities. One is pφ, owing to the fact the φ is cyclic in the
Lagrangian. I.e. φ→ φ+ ζ is a continuous one-parameter coordinate transformation which
leaves L invariant. We have

pφ =
∂L

∂φ̇
= m

(
r21 + r22

)
φ̇ . (8)

The second conserved quantity is the Hamiltonian, which is now H = T + U , since T is
homogeneous of degree 2 in the generalized velocities. Using conservation of momentum,
we can write

H = 1
2m
(
ṙ21 + ṙ22

)
+

p2
φ

2m(r21 + r22)
+ 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 . (9)

Once again, we can define an effective potential,

Ueff(r1, r2) =
p2

φ

2m(r21 + r22)
+ 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 , (10)

which is different than the effective potential from part (b). However in both this case and
in part (b), we have that the radial coordinates obey the equations of motion

mr̈j = −∂Ueff

∂rj
, (11)

for j = 1, 2. Note that this equation of motion follows directly from Ḣ = 0.
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[2] A point mass m slides inside a hoop of radius R and mass M , which itself rolls without
slipping on a horizontal surface, as depicted in fig. 2.

Figure 2: A mass point m rolls inside a hoop of mass M and radius R which rolls without
slipping on a horizontal surface.

Choose as general coordinates (X,φ, r), where X is the horizontal location of the center of
the hoop, φ is the angle the mass m makes with respect to the vertical (φ = 0 at the bottom
of the hoop), and r is the distance of the mass m from the center of the hoop. Since the
mass m slides inside the hoop, there is a constraint:

G(X,φ, r) = r −R = 0 .

Nota bene: The kinetic energy of the moving hoop, including translational and rotational
components (but not including the mass m), is Thoop = MẊ2 (i.e. twice the translational
contribution alone).

(a) Find the Lagrangian L(X,φ, r, Ẋ , φ̇, ṙ, t).
[5 points]

The Cartesian coordinates and velocities of the mass m are

x = X + r sinφ ẋ = Ẋ + ṙ sinφ+ rφ̇ cosφ (12)

y = R− r cosφ ẏ = −ṙ cosφ+ rφ̇ sinφ (13)

The Lagrangian is then

L =

T
︷ ︸︸ ︷

(M + 1
2m)Ẋ2 + 1

2m(ṙ2 + r2φ̇2) +mẊ(ṙ sinφ+ rφ̇ cosφ) −

U
︷ ︸︸ ︷

mg(R − r cosφ) (14)

Note that we are not allowed to substitute r = R and hence ṙ = 0 in the Lagrangian prior

to obtaining the equations of motion. Only after the generalized momenta and forces are
computed are we allowed to do so.
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(b) Find all the generalized momenta pσ, the generalized forces Fσ, and the forces of
constraint Qσ.
[10 points]

The generalized momenta are

pr =
∂L

∂ṙ
= mṙ +mẊ sinφ (15)

pX =
∂L

∂Ẋ
= (2M +m)Ẋ +mṙ sinφ+mrφ̇ cosφ (16)

pφ =
∂L

∂φ̇
= mr2φ̇+mrẊ cosφ (17)

The generalized forces and the forces of constraint are

Fr =
∂L

∂r
= mrφ̇2 +mẊφ̇ cosφ+mg cosφ Qr = λ

∂G

∂r
= λ (18)

FX =
∂L

∂X
= 0 QX = λ

∂G

∂X
= 0 (19)

Fφ =
∂L

∂φ
= mẊṙ cosφ−mẊφ̇ sinφ−mgr sinφ Qφ = λ

∂G

∂φ
= 0 . (20)

The equations of motion are
ṗσ = Fσ +Qσ . (21)

At this point, we can legitimately invoke the constraint r = R and set ṙ = 0 in all the pσ

and Fσ.

(c) Derive expressions for all conserved quantities.
[5 points]

There are two conserved quantities, which each derive from continuous invariances of the
Lagrangian which respect the constraint. The first is the total momentum pX :

FX = 0 =⇒ P ≡ pX = constant . (22)

The second conserved quantity is the Hamiltonian, which in this problem turns out to be
the total energy E = T +U . Incidentally, we can use conservation of P to write the energy
in terms of the variable φ alone. From

Ẋ =
P

2M +m
− mR cosφ

2M +m
φ̇ , (23)

we obtain

E = 1
2(2M +m)Ẋ2 + 1

2mR
2φ̇2 +mRẊφ̇ cosφ+mgR(1 − cosφ)

=
αP 2

2m(1 + α)
+ 1

2mR
2

(
1 + α sin2φ

1 + α

)

φ̇2 +mgR(1 − cosφ) , (24)
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where we’ve defined the dimensionless ratio α ≡ m/2M . It is convenient to define the
quantity

Ω2 ≡
(

1 + α sin2φ

1 + α

)

φ̇2 + 2ω2
0(1 − cosφ) , (25)

with ω0 ≡
√

g/R. Clearly Ω2 is conserved, as it is linearly related to the energy E:

E =
αP 2

2m(1 + α)
+ 1

2mR
2Ω2 . (26)

(d) Derive a differential equation of motion involving the coordinate φ(t) alone. I.e. your
equation should not involve r, X, or the Lagrange multiplier λ.
[5 points]

From conservation of energy,

d(Ω2)

dt
= 0 =⇒

(
1 + α sin2φ

1 + α

)

φ̈+

(
α sinφ cosφ

1 + α

)

φ̇2 + ω2
0 sinφ = 0 , (27)

again with α = m/2M . Incidentally, one can use these results in eqns. 25 and 27 to

eliminate φ̇ and φ̈ in the expression for the constraint force, Qr = λ = ṗr − Fr. One finds

λ = −mR φ̇2 + ω2
0 cosφ

1 + α sin2φ

= − mRω2
0

(1 + α sin2φ)2

{

(1 + α)

(
Ω2

ω2
0

− 4 sin2(1
2φ)

)

+ (1 + α sin2φ) cosφ

}

. (28)

This last equation can be used to determine the angle of detachment, where λ vanishes and
the mass m falls off the inside of the hoop. This is because the hoop can only supply a
repulsive normal force to the mass m. This was worked out in detail in my lecture notes on
constrained systems.
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[3] Two objects of masses m1 and m2 move under the influence of a central potential

U = k
∣
∣r1 − r2

∣
∣1/4

.

(a) Sketch the effective potential Ueff(r) and the phase curves for the radial motion. Identify
for which energies the motion is bounded.
[5 points]

Figure 3: The effective Ueff(r) = E0 Ueff(r/r0), where r0 and E0 are the radius and energy
of the circular orbit.

The effective potential is

Ueff(r) =
ℓ2

2µr2
+ krn (29)

with n = 1
4 . In sketching the effective potential, I have rendered it in dimensionless form,

Ueff(r) = E0 Ueff(r/r0) , (30)

where r0 = (ℓ2/nkµ)(n+2)−1

and E0 =
(

1
2 + 1

n

)
ℓ2/µr20, which are obtained from the results

of part (b). One then finds

Ueff(x) =
nx−2 + 2xn

n+ 2
. (31)
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Although it is not obvious from the detailed sketch in fig. 3, the effective potential does
diverge, albeit slowly, for r → ∞. Clearly it also diverges for r → 0. Thus, the relative
coordinate motion is bounded for all energies; the allowed energies are E ≥ E0.

(b) What is the radius r0 of the circular orbit? Is it stable or unstable? Why?
[5 points]

For the general power law potential U(r) = krn, with nk > 0 (attractive force), setting

U ′
eff(r0) = 0 yields

− ℓ2

µr30
+ nkrn−1

0 = 0 . (32)

Thus,

r0 =

(
ℓ2

nkµ

) 1
n+2

=

(
4ℓ2

kµ

)4
9

. (33)

The orbit r(t) = r0 is stable because the effective potential has a local minimum at r = r0,

i.e. U ′′
eff

(r0) > 0. This is obvious from inspection of the graph of Ueff(r) but can also be
computed explicitly:

U ′′

eff
(r0) =

3ℓ2

µr40
+ n(n− 1)krn

0

= (n+ 2)
ℓ2

µr40
. (34)

Thus, provided n > −2 we have U ′′
eff(r0) > 0.

(c) For small perturbations about a circular orbit, the radial coordinate oscillates between
two values. Suppose we compare two systems, with ℓ′/ℓ = 2, but µ′ = µ and k′ = k. What
is the ratio ω′/ω of their frequencies of small radial oscillations?
[5 points]

From the radial coordinate equation µr̈ = −U ′
eff

(r), we expand r = r0 + η and find

µη̈ = −U ′′

eff
(r0) η + O(η2) . (35)

The radial oscillation frequency is then

ω = (n+ 2)1/2 ℓ

µr20
= (n+ 2)1/2 n

2
n+2 k

2
n+2 µ−

n

n+2 ℓ
n−2
n+2 . (36)

The ℓ dependence is what is key here. Clearly

ω′

ω
=

(
ℓ′

ℓ

)n−2
n+2

. (37)

In our case, with n = 1
4 , we have ω ∝ ℓ−7/9 and thus

ω′

ω
= 2−7/9 . (38)
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(d) Find the equation of the shape of the slightly perturbed circular orbit: r(φ) = r0+η(φ).
That is, find η(φ). Sketch the shape of the orbit.
[5 points]

We have that η(φ) = η0 cos(βφ+ δ0), with

β =
ω

φ̇
=
µr20
ℓ

· ω =
√
n+ 2 . (39)

With n = 1
4 , we have β = 3

2 . Thus, the radial coordinate makes three oscillations for every
two rotations. The situation is depicted in fig. 4.

Figure 4: Radial oscillations with β = 3
2 .

(e) What value of n would result in a perturbed orbit shaped like that in fig. 5?
[5 points]

Figure 5: Closed precession in a central potential U(r) = krn.

Clearly β =
√
n+ 2 = 4, in order that η(φ) = η0 cos(βφ+δ0) executes four complete periods

over the interval φ ∈ [0, 2π]. This means n = 14.
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[4] Two masses and three springs are arranged as shown in fig. 6. You may assume that in
equilibrium the springs are all unstretched with length a. The masses and spring constants
are simple multiples of fundamental values, viz.

m1 = m , m2 = 4m , k1 = k , k2 = 4k , k3 = 28k . (40)

Figure 6: Coupled masses and springs.

(a) Find the Lagrangian.
[5 points]

Choosing displacements relative to equilibrium as our generalized coordinates, we have

T = 1
2mη̇2

1 + 2mη̇2
2 (41)

and
U = 1

2k η
2
1 + 2k (η2 − η1)

2 + 14k η2
2 . (42)

Thus,
L = T − U = 1

2mη̇2
1 + 2mη̇2

2 − 1
2k η

2
1 − 2k (η2 − η1)

2 − 14k η2
2 . (43)

You are not required to find the equilibrium values of x1 and x2. However, suppose all the
unstretched spring lengths are a and the total distance between the walls is L. Then, with
x1,2 being the location of the masses relative to the left wall, we have

U = 1
2k1 (x1 − a)2 + 1

2k2 (x2 − x1 − a)2 + 1
2k3 (L− x2 − a)2 . (44)

Differentiating with respect to x1,2 then yields

∂U

∂x1
= k1 (x1 − a) − k2 (x2 − x1 − a) (45)

∂U

∂x2
= k2 (x2 − x1 − a) − k3 (L− x2 − a) . (46)

Setting these both to zero, we obtain

(k1 + k2)x1 − k2 x2 = (k1 − k2) a (47)

−k2 x1 + (k2 + k3)x2 = (k2 − k3) a+ k3L . (48)

Solving these two inhomogeneous coupled linear equations for x1,2 then yields the equilib-
rium positions. However, we don’t need to do this to solve the problem.
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(b) Find the T and V matrices.
[5 points]

We have

Tσσ′ =
∂2T

∂η̇σ∂η̇σ′

=

(
m 0
0 4m

)

(49)

and

Vσσ′ =
∂2U

∂ησ∂ησ′

=

(
5k −4k
−4k 32k

)

. (50)

(c) Find the eigenfrequencies ω1 and ω2.
[5 points]

We have

Q(ω) ≡ ω2 T − V =

(
mω2 − 5k 4k

4k 4mω2 − 32k

)

= k

(
λ− 5 4

4 4λ− 32

)

, (51)

where λ = ω2/ω2
0 , with ω0 =

√

k/m. Setting det Q(ω) = 0 then yields

λ2 − 13λ+ 36 = 0 , (52)

the roots of which are λ
−

= 4 and λ+ = 9. Thus, the eigenfrequencies are

ω− = 2ω0 , ω+ = 3ω0 . (53)

(d) Find the modal matrix Aσi.
[5 points]

To find the normal modes, we set

(

λ
±
− 5 4

4 4λ± − 32

)(

ψ
(±)
1

ψ
(±)
2

)

= 0 . (54)

This yields two linearly dependent equations, from which we can determine only the ratios

ψ
(±)
2 /ψ

(±)
1 . Plugging in for λ±, we find

(

ψ
(−)
1

ψ
(−)
2

)

= C−
(

4
1

)

,

(

ψ
(+)
1

ψ
(+)
2

)

= C+

(
1
−1

)

. (55)

We then normalize by demanding ψ
(i)
σ

Tσσ′ ψ
(j)
σ′ = δij . We can practically solve this by

inspection:
20m |C−|2 = 1 , 5m |C+|2 = 1 . (56)
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We may now write the modal matrix,

A =
1√
5m

(
2 1
1
2 −1

)

. (57)

(e) Write down the most general solution for the motion of the system.
[5 points]

The most general solution is

(

η1(t)

η2(t)

)

= B
−

(
4
1

)

cos(2ω0t+ ϕ
−
) +B+

(
1
−1

)

cos(3ω0t+ ϕ+) . (58)

Note that there are four constants of integration: B± and ϕ±.
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