PHYSICS 110A : CLASSICAL MECHANICS PROBLEM SET \#5

[1] A bead of mass m slides frictionlessly along a wire curve $z=x^{2} / 2 b$, where $b>0$. The wire rotates with angular frequency ω about the $\hat{\boldsymbol{z}}$ axis.
(a) Find the Lagrangian of this system.
(b) Find the Hamiltonian.
(c) Find the effective potential $U_{\text {eff }}(x)$.
(d) Show that the motion is unbounded for $\omega^{2}>\omega_{\mathrm{c}}^{2}$ and find the critical value ω_{c}.
(e) Sketch the phase curves for this system for the cases $\omega^{2}<\omega_{\mathrm{c}}^{2}$ and $\omega^{2}>\omega_{\mathrm{c}}^{2}$.
(f) Find an expression for the period of the motion when $\omega^{2}<\omega_{\mathrm{c}}^{2}$.
(g) Find the force of constraint which keeps the bead on the wire.

Solution :

We will solve this problem for a general shape $z(x)$. Since the curve is rotating, we will use the radial coordinate ρ instead of x, keeping in mind that the wire is a one-dimensional object and not a two-dimensional surface. The coordinate ρ then indicates the direction along the wire but perpendicular to the $\hat{\boldsymbol{z}}$ axis. Note that $\rho \in \mathrm{R}$ may be positive or negative.
(a) The Lagrangian is

$$
\begin{equation*}
L(\rho, z, \dot{\rho}, \dot{z})=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \dot{z}^{2}+\frac{1}{2} m \omega^{2} \rho^{2}-m g z . \tag{1}
\end{equation*}
$$

This is supplemented by the constraint

$$
\begin{equation*}
G(\rho, z)=z-z(\rho)=0 . \tag{2}
\end{equation*}
$$

Of course, we could eliminate z as an independent degree of freedom from the outset, and write

$$
\begin{equation*}
L(\rho, \dot{\rho})=\frac{1}{2} m\left[\left(1+\left[z^{\prime}(\rho)\right]^{2}\right) \dot{\rho}^{2}+\omega^{2} \rho^{2}\right]-m g z(\rho) . \tag{3}
\end{equation*}
$$

(b) The Hamiltonian is

$$
\begin{align*}
H & =p_{\sigma} \dot{q}_{\sigma}-L \\
& =\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \dot{z}^{2}-\frac{1}{2} m \omega^{2} \rho^{2}+m g z \\
& =\frac{1}{2} m\left(1+\left[z^{\prime}(\rho)\right]^{2}\right) \dot{\rho}^{2}+U_{\mathrm{eff}}(\rho) . \tag{4}
\end{align*}
$$

(c) The effective potential is

$$
\begin{align*}
U_{\mathrm{eff}}(\rho) & =m g z(\rho)-\frac{1}{2} m \omega^{2} \rho^{2} \\
& =\frac{1}{2} m\left(\omega_{\mathrm{c}}^{2}-\omega^{2}\right) \rho^{2}, \tag{5}
\end{align*}
$$

where $\omega_{\mathrm{c}} \equiv \sqrt{g / b}$. Note that we do not have $m \ddot{\rho}=-U_{\text {eff }}^{\prime}(\rho)$. This is because

$$
\begin{equation*}
p_{\rho}=\frac{\partial L}{\partial \dot{\rho}}=m\left(1+\left[z^{\prime}(\rho)\right]^{2}\right) \dot{\rho}, \tag{6}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\dot{p}_{\rho}=\frac{\partial L}{\partial \rho} \Rightarrow\left(1+\left[z^{\prime}(\rho)\right]^{2}\right) \ddot{\rho}=\omega^{2} \rho-g z^{\prime}(\rho)-z^{\prime}(\rho) z^{\prime \prime}(\rho) \dot{\rho}^{2} . \tag{7}
\end{equation*}
$$

(d) Since L has no explicit time dependence, H is a constant of the moton:

$$
\begin{align*}
H & =\frac{1}{2} m\left(1+\left[z^{\prime}(\rho)\right]^{2}\right) \dot{\rho}^{2}+U_{\mathrm{eff}}(\rho) \\
& =\frac{1}{2} m\left(1+\frac{\rho^{2}}{b^{2}}\right) \dot{\rho}^{2}+\frac{1}{2} m\left(\omega_{\mathrm{c}}^{2}-\omega^{2}\right) \rho^{2} . \tag{8}
\end{align*}
$$

Note that if $\omega^{2}>\omega_{\mathrm{c}}^{2}$ that the level sets of $H(\rho, \dot{\rho})$ are unbounded. Hence the motion of the system, which takes place along these level sets, is also unbounded.
(e) Let us define the dimensionless coordinate $u \equiv \rho / b$ and dimensionless time variable $s \equiv\left|\omega_{\mathrm{c}}^{2}-\omega^{2}\right|^{1 / 2} t$. Then conservation of H means that

$$
\begin{equation*}
C=\left(1+u^{2}\right) v^{2}-\sigma u^{2} \tag{9}
\end{equation*}
$$

is constant, where $v=\frac{d u}{d s}$ is the dimensionless velocity, and where $\sigma \equiv \operatorname{sgn}\left(\omega^{2}-\omega_{\mathrm{c}}^{2}\right)$. Setting $\frac{d C}{d s}=0$, we obtain

$$
\begin{equation*}
\frac{d u}{d s}=v \quad, \quad \frac{d v}{d s}=\frac{\left(\sigma-v^{2}\right) u}{1+u^{2}} \tag{10}
\end{equation*}
$$

This phase flow has a single fixed point, at $(u, v)=(0,0)$, which is either a center $\left(\omega^{2}<\omega_{\mathrm{c}}^{2}\right)$ or a saddle point ($\omega^{2}>\omega_{\mathrm{c}}^{2}$).

A sketch of the phase flow for $\omega^{2}<\omega_{\mathrm{c}}^{2}$ is shown in Fig. 1; the flow for $\omega^{2}>\omega_{\mathrm{c}}^{2}$ is shown in Fig. 2. The Mathematica plot in Fig. 1 was obtained from the following commands:

```
<<Graphics'PlotField`
G1 = ContourPlot[ (1+x^2) y^2 + x^2, {x, -4,4}, {y, -4,4}, PlotPoints -> 50,
Contours -> {0.1, 1, 4, 10, 20, 50, 100}, ContourShading -> False];
G2 = PlotVectorField[ {y, -(1+y^2) x / (1+x^2)}, {x, -4,4}, {y,-4,4},
PlotPoints -> 30, ColorFunction -> Hue, ScaleFactor -> 0.55];
Show[ {G1, G2} ]
```


Figure 1: Level sets of the function $C(u, v)=\left(1+u^{2}\right) v^{2}+u^{2}$ superimposed on the phase flow $\dot{u}=v, \dot{v}=-u\left(1+v^{2}\right) /\left(1+u^{2}\right)$. Note that the phase curves are bounded.

It is worthwhile noting that other shapes $z(\rho)$ may have fixed points for $\rho \neq 0$. For example, consider the shape

$$
\begin{equation*}
z(\rho)=\frac{\rho^{4}}{4 b^{3}} . \tag{11}
\end{equation*}
$$

If we define $u=\rho / b$ and $\omega_{\mathrm{c}}^{2}=g / b$ as before, but this time write $s=\omega_{\mathrm{c}} t$, and define the new dimensionless parameter $\varepsilon \equiv \omega^{2} / \omega_{\mathrm{c}}^{2}$, we have that

$$
\begin{equation*}
C(u, v)=\left(1+u^{6}\right) v^{2}+\frac{1}{4} u^{2}-\frac{1}{2} \varepsilon u^{2} \tag{12}
\end{equation*}
$$

is constant, and the dynamics is given by

$$
\begin{equation*}
\frac{d u}{d s}=v \quad, \quad \frac{d v}{d s}=\frac{\left(\varepsilon-u^{2}-6 u^{4} v^{2}\right) u}{2\left(1+u^{6}\right)} . \tag{13}
\end{equation*}
$$

This flow, shown in Fig. 3, exhibits a saddle point at $(u, v)=(0,0)$ and two centers at $(u, v)=(\pm \sqrt{\varepsilon}, 0)$. The separatrix, which flows through $(0,0)$, has $C=0$. All the phase curves are bounded.
(e) The equation of motion can be taken as $\dot{H}=0$, which yields

$$
\begin{equation*}
\left(1+\left[z^{\prime}(\rho)\right]^{2}\right) \ddot{\rho}+z^{\prime}(\rho) z^{\prime \prime}(\rho) \dot{\rho}^{2}=\omega^{2} \rho-g z^{\prime}(\rho) . \tag{14}
\end{equation*}
$$

Figure 2: Level sets of the function $C(u, v)=\left(1+u^{2}\right) v^{2}-u^{2}$ superimposed on the phase flow $\dot{u}=v, \dot{v}=u\left(1-v^{2}\right) /\left(1+u^{2}\right)$. Note that the phase curves are unbounded.

We can expand about an equilibrium solution $g z^{\prime}\left(\rho^{*}\right)=\omega^{2} \rho^{*}$, writing $\rho=\rho^{*}+\delta \rho$, in which case

$$
\begin{equation*}
\delta \ddot{\rho}=-\Omega^{2} \delta \rho \quad, \quad \Omega^{2}=\frac{g z^{\prime \prime}\left(\rho^{*}\right)-\omega^{2}}{1+\left[z^{\prime}\left(\rho^{*}\right)\right]^{2}} . \tag{15}
\end{equation*}
$$

Thus, the equilibrium at ρ^{*} is stable if $\omega^{2}<g z^{\prime \prime}\left(\rho^{*}\right)$ and unstable if $\omega^{2}>g z^{\prime \prime}\left(\rho^{*}\right)$.
We can go even farther in this analysis, using the conservation of H, which allows us to write the motion as a first order ODE,

$$
\begin{equation*}
d t= \pm \frac{\sqrt{1+\left[z^{\prime}(\rho)\right]^{2}}}{\sqrt{\frac{2}{m}\left[H-U_{\mathrm{eff}}(\rho)\right]}} d \rho \tag{16}
\end{equation*}
$$

Identifying the turning points as solutions to

$$
\begin{equation*}
H=U_{\mathrm{eff}}\left(\rho_{ \pm}\right), \tag{17}
\end{equation*}
$$

we have the period for motion $T(H)$ is

$$
\begin{equation*}
T(H)=\sqrt{\frac{m}{2}} \int_{\rho_{-}(H)}^{\rho_{+}} d \rho \sqrt{\frac{1+\left[z^{\prime}(\rho)\right]^{2}}{H-U_{\mathrm{eff}}(\rho)}} . \tag{18}
\end{equation*}
$$

Figure 3: Level sets of the function $C(u, v)=\left(1+u^{6}\right) v^{2}+\frac{1}{4} u^{4}-\frac{1}{2} \varepsilon u^{2}$ superimposed on the phase flow $\dot{u}=v, \dot{v}=\frac{1}{2} u\left(\varepsilon-u^{2}-6 u^{4} v^{2}\right) /\left(1+u^{6}\right)$, for $\varepsilon=1$. There are two centers, at $(\pm 1,0)$, and a saddle at $(0,0)$. All phase curves are bounded.

For the case $z(\rho)=\rho^{2} / 2 b$, we have

$$
\begin{equation*}
T(H)=\frac{4}{\sqrt{\omega_{\mathrm{c}}^{2}-\omega^{2}}} \int_{0}^{\pi / 2} d \theta \sqrt{1+\frac{2 H \sin ^{2} \theta}{m b^{2}\left(\omega_{\mathrm{c}}^{2}-\omega^{2}\right)}} . \tag{19}
\end{equation*}
$$

(g) If we write $G(\rho, z)=z-z(\rho)=0$ as a constraint, the equations of motion are

$$
\begin{align*}
& m \ddot{\rho}=m \omega^{2} \rho-\lambda z^{\prime}(\rho) \tag{20}\\
& m \ddot{z}=-m g+\lambda . \tag{21}
\end{align*}
$$

We now eliminate $z=z(\rho)$, in which case

$$
\begin{equation*}
\dot{z}=z^{\prime}(\rho) \dot{\rho} \quad, \quad \ddot{z}=z^{\prime}(\rho) \ddot{\rho}+z^{\prime \prime}(\rho) \dot{\rho}^{2} . \tag{22}
\end{equation*}
$$

We may now write

$$
\begin{equation*}
\lambda=m g+m z^{\prime}(\rho) \ddot{\rho}+m z^{\prime \prime}(\rho) \dot{\rho}^{2} \tag{23}
\end{equation*}
$$

and, substituting this into the first of the equations of motion and collecting terms, we find

$$
\begin{equation*}
\left(1+\left[z^{\prime}(\rho)\right]^{2}\right) \ddot{\rho}=\omega^{2} \rho-g z^{\prime}(\rho)-z^{\prime}(\rho) z^{\prime}(\rho) \dot{\rho}^{2} . \tag{24}
\end{equation*}
$$

As we have seen above, this result also follows from $\dot{H}=0$. We may now solve for λ in terms of ρ and $\dot{\rho}$:

$$
\begin{equation*}
\lambda=\frac{m}{1+\left[z^{\prime}(\rho)\right]^{2}}\left(g+z^{\prime \prime}(\rho) \dot{\rho}^{2}+\omega^{2} \rho z^{\prime}(\rho)\right) . \tag{25}
\end{equation*}
$$

The force of constraint supplied by the wire is

$$
\begin{equation*}
\boldsymbol{Q}=Q \hat{\mathbf{n}}_{\perp}=\left(Q_{\rho} \hat{\boldsymbol{\rho}}+Q_{z} \hat{\boldsymbol{z}}\right), \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\mathbf{n}}=\frac{-z^{\prime}(\rho) \hat{\boldsymbol{\rho}}+\hat{\mathbf{z}}}{\sqrt{1+\left[z^{\prime}(\rho)\right]^{2}}} \tag{27}
\end{equation*}
$$

is the unit vector locally orthogonal to the tangent to the curve. Thus,

$$
\begin{align*}
Q & =\lambda \cdot \sqrt{1+\left[z^{\prime}(\rho)\right]^{2}} \\
& =\frac{m\left(g+z^{\prime \prime}(\rho) \dot{\rho}^{2}+\omega^{2} \rho z^{\prime}(\rho)\right)}{\sqrt{1+\left[z^{\prime}(\rho)\right]^{2}}} . \tag{28}
\end{align*}
$$

We may further eliminate $\dot{\rho}$ in favor of ρ by invoking conservation of H, which says

$$
\begin{equation*}
\dot{\rho}^{2}=\frac{\frac{2 H}{m}-2 g z(\rho)+\omega^{2} \rho^{2}}{1+\left[z^{\prime}(\rho)\right]^{2}} . \tag{29}
\end{equation*}
$$

$7.34\left(x_{m}, y_{m}\right)$
Problem set $\# 5$
R

$$
\begin{aligned}
& x_{m}=x, y_{m}=0 \\
& x_{m}=r \cos \theta+x, \quad y_{m}=-r \sin \theta \\
& \dot{x}_{m}=\dot{r} \cos \theta-r \dot{\theta} \sin \theta+\dot{x} \\
& \dot{y}_{m}=-\dot{r} \sin \theta-r \dot{\theta} \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}_{m}^{2}=\dot{r}^{2} \cos ^{2} \theta+ r^{2} \dot{\theta}^{2} \sin ^{2} \theta+\dot{x}^{2}-2 r \dot{r} \dot{\theta} \cos \theta \sin \theta+2 \dot{r} \dot{x} \cos \theta \\
&-2 r \dot{x} \dot{\theta} \sin \theta \\
& \dot{y}_{m}^{2}=\dot{r}^{2} \sin ^{2} \theta+r^{2} \dot{\theta}^{2} \cos ^{2} \theta+2 r \dot{r} \dot{\theta} \cos \theta \sin \theta
\end{aligned}
$$

a)

$$
\begin{aligned}
L & =\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left(\dot{x}_{m}^{2}+\dot{y}_{m}^{2}\right)-m g y_{m} \\
& =\frac{1}{2}(M+m) \dot{x}^{2}+\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+2 \dot{r} \dot{x}(\cos \theta-\dot{\theta} \sin \theta)\right)+m g r \sin \theta
\end{aligned}
$$

In order to find the reaction of the wedge on the mass m, we cannot assume r is constant.
\therefore our constraint $r-R=O=G_{1}(x, r, \theta)$
To get the eqns. of motion, we can set $r=R$ with $\dot{r}=\ddot{r}=0$.

$$
\begin{array}{ll}
x: & \ddot{x}=a R\left(\ddot{\theta} \sin \theta+\dot{\theta}^{-2} \cos \theta\right) \\
\theta: & \ddot{\theta}=\frac{\ddot{x} \sin \theta+g \cos \theta}{R}
\end{array}
$$

for $a=\frac{m}{M+M}$
b)

$$
\begin{aligned}
& \frac{\partial L}{\partial r}-\frac{d}{d t} \frac{\partial L}{\partial \dot{r}}=\lambda \frac{\partial G}{\partial r} \\
& \Rightarrow m \ddot{x} \cos \theta-m R \dot{\theta}^{2}-m g \sin \theta=\lambda, \text { for } r=R, \\
& \dot{r}=\ddot{r}=0
\end{aligned}
$$

plug in \ddot{x} in terms of $\theta, \dot{\theta}$:

$$
\lambda=\left[\frac{a-1}{1-a \sin ^{2} \theta}\right]\left(R \dot{\theta}^{2}+g \sin \theta\right)
$$

now, find an expression for $\dot{\theta}$ using conservation of energy:

$$
\frac{N 1+m}{2} \dot{x}^{2}+\frac{m}{2}\left(R^{2} \dot{\theta}^{2}-2 \dot{x} R \dot{\theta} \sin \theta\right)-m g R \sin \theta=-m g R \sin \theta_{0}
$$

where θ_{0} is the initial position of m.
we also have $\dot{x}=a R \dot{\theta} \sin e$ from of equ of motion plug this in to the energy expression:

$$
\dot{\theta}^{2}=\frac{2 g\left(\sin \theta-\sin \theta_{0}\right)}{R\left(1-a \sin ^{2} \theta\right)}
$$

\therefore we have the mass reaction:

$$
\lambda=-\frac{m M g\left(3 \sin \theta-a \sin ^{3} \theta-2 \sin \theta_{0}\right)}{(m+M)\left(1-a \sin ^{2} \theta\right)^{2}}
$$

7.37

$$
L=\frac{1}{2}\left(m_{1} \dot{x}_{1}^{2}+m_{2} \dot{x}_{2}^{2}+m_{3} \dot{x}_{3}^{2}\right)+g\left(m x_{1}+m x_{2}+m x_{3}\right)
$$

Constraints are $x_{1}+y=l_{1} ; x_{2}-y+x_{3}-y=l_{2}$ equs of motion are
(1) $m_{1} g-m_{1} \frac{d^{2} x}{d t^{2}}+2 \lambda=0$
(2) $m_{2} g-m_{2} \frac{d^{2} x_{2}}{d t^{2}}+\lambda=0$
(3) $m_{3} g-m_{3} \frac{d^{2} x_{3}}{d t^{2}}+\lambda=0$

The constraints can be combined to give

$$
\begin{equation*}
2 x_{1}+x_{2}+x_{3}-\left(2 l_{1}+l_{2}\right)=0 \Rightarrow 2 \ddot{x}_{1}+\ddot{x}_{2}+\ddot{x}_{3}=0 \tag{4}
\end{equation*}
$$

combine equs (1) \rightarrow (4) to get

$$
\lambda=\frac{-4 g}{\frac{4}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}}}
$$

and

$$
T_{1}=m_{1} g-m_{1} \ddot{x}_{1}=-2 \lambda=\frac{8 g}{\frac{4}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}}}
$$

