PHYSICS 110A : CLASSICAL MECHANICS PROBLEM SET #5

[1] A bead of mass m slides frictionlessly along a wire curve $z = x^2/2b$, where b > 0. The wire rotates with angular frequency ω about the \hat{z} axis.

- (a) Find the Lagrangian of this system.
- (b) Find the Hamiltonian.
- (c) Find the effective potential $U_{\text{eff}}(x)$.
- (d) Show that the motion is unbounded for $\omega^2 > \omega_c^2$ and find the critical value ω_c .
- (e) Sketch the phase curves for this system for the cases $\omega^2 < \omega_c^2$ and $\omega^2 > \omega_c^2$.
- (f) Find an expression for the period of the motion when $\omega^2 < \omega_c^2$.

(g) Find the force of constraint which keeps the bead on the wire.

Solution :

We will solve this problem for a general shape z(x). Since the curve is rotating, we will use the radial coordinate ρ instead of x, keeping in mind that the wire is a one-dimensional object and not a two-dimensional surface. The coordinate ρ then indicates the direction along the wire but perpendicular to the \hat{z} axis. Note that $\rho \in \mathbb{R}$ may be positive or negative.

(a) The Lagrangian is

$$L(\rho, z, \dot{\rho}, \dot{z}) = \frac{1}{2}m\dot{\rho}^2 + \frac{1}{2}m\dot{z}^2 + \frac{1}{2}m\omega^2\rho^2 - mgz .$$
 (1)

This is supplemented by the constraint

$$G(\rho, z) = z - z(\rho) = 0$$
. (2)

Of course, we could eliminate z as an independent degree of freedom from the outset, and write

$$L(\rho, \dot{\rho}) = \frac{1}{2}m \left[\left(1 + [z'(\rho)]^2 \right) \dot{\rho}^2 + \omega^2 \rho^2 \right] - mgz(\rho) .$$
(3)

(b) The Hamiltonian is

$$H = p_{\sigma} \dot{q}_{\sigma} - L$$

= $\frac{1}{2} m \dot{\rho}^2 + \frac{1}{2} m \dot{z}^2 - \frac{1}{2} m \omega^2 \rho^2 + mgz$
= $\frac{1}{2} m \left(1 + [z'(\rho)]^2 \right) \dot{\rho}^2 + U_{\text{eff}}(\rho) .$ (4)

(c) The effective potential is

$$U_{\text{eff}}(\rho) = mgz(\rho) - \frac{1}{2}m\omega^2\rho^2$$
$$= \frac{1}{2}m\left(\omega_{\text{c}}^2 - \omega^2\right)\rho^2 , \qquad (5)$$

where $\omega_{\rm c} \equiv \sqrt{g/b}$. Note that we do not have $m\ddot{\rho} = -U'_{\rm eff}(\rho)$. This is because

$$p_{\rho} = \frac{\partial L}{\partial \dot{\rho}} = m \left(1 + [z'(\rho)]^2 \right) \dot{\rho} , \qquad (6)$$

and thus

$$\dot{p}_{\rho} = \frac{\partial L}{\partial \rho} \quad \Rightarrow \quad \left(1 + \left[z'(\rho)\right]^2\right) \ddot{\rho} = \omega^2 \rho - gz'(\rho) - z'(\rho) \, z''(\rho) \, \dot{\rho}^2 \,. \tag{7}$$

(d) Since L has no explicit time dependence, H is a constant of the moton:

$$H = \frac{1}{2}m\left(1 + [z'(\rho)]^2\right)\dot{\rho}^2 + U_{\text{eff}}(\rho)$$

= $\frac{1}{2}m\left(1 + \frac{\rho^2}{b^2}\right)\dot{\rho}^2 + \frac{1}{2}m(\omega_{\text{c}}^2 - \omega^2)\,\rho^2$. (8)

Note that if $\omega^2 > \omega_c^2$ that the level sets of $H(\rho, \dot{\rho})$ are unbounded. Hence the motion of the system, which takes place along these level sets, is also unbounded.

(e) Let us define the dimensionless coordinate $u \equiv \rho/b$ and dimensionless time variable $s \equiv |\omega_c^2 - \omega^2|^{1/2} t$. Then conservation of H means that

$$C = (1+u^2)v^2 - \sigma u^2$$
(9)

is constant, where $v = \frac{du}{ds}$ is the dimensionless velocity, and where $\sigma \equiv \operatorname{sgn}(\omega^2 - \omega_c^2)$. Setting $\frac{dC}{ds} = 0$, we obtain

$$\frac{du}{ds} = v$$
 , $\frac{dv}{ds} = \frac{(\sigma - v^2)u}{1 + u^2}$. (10)

This phase flow has a single fixed point, at (u, v) = (0, 0), which is either a center $(\omega^2 < \omega_c^2)$ or a saddle point $(\omega^2 > \omega_c^2)$.

A sketch of the phase flow for $\omega^2 < \omega_c^2$ is shown in Fig. 1; the flow for $\omega^2 > \omega_c^2$ is shown in Fig. 2. The Mathematica plot in Fig. 1 was obtained from the following commands:

<<Graphics'PlotField' G1 = ContourPlot[$(1+x^2) y^2 + x^2$, $\{x,-4,4\}$, $\{y,-4,4\}$, PlotPoints -> 50, Contours -> $\{0.1, 1, 4, 10, 20, 50, 100\}$, ContourShading -> False]; G2 = PlotVectorField[$\{y, -(1+y^2) x / (1+x^2)\}$, $\{x,-4,4\}$, $\{y,-4,4\}$, PlotPoints -> 30, ColorFunction -> Hue, ScaleFactor -> 0.55]; Show[$\{G1, G2\}$]

Figure 1: Level sets of the function $C(u, v) = (1 + u^2)v^2 + u^2$ superimposed on the phase flow $\dot{u} = v$, $\dot{v} = -u(1 + v^2)/(1 + u^2)$. Note that the phase curves are bounded.

It is worthwhile noting that other shapes $z(\rho)$ may have fixed points for $\rho \neq 0$. For example, consider the shape

$$z(\rho) = \frac{\rho^4}{4 \, b^3} \,. \tag{11}$$

If we define $u = \rho/b$ and $\omega_c^2 = g/b$ as before, but this time write $s = \omega_c t$, and define the new dimensionless parameter $\varepsilon \equiv \omega^2/\omega_c^2$, we have that

$$C(u,v) = (1+u^6)v^2 + \frac{1}{4}u^2 - \frac{1}{2}\varepsilon u^2$$
(12)

is constant, and the dynamics is given by

$$\frac{du}{ds} = v$$
 , $\frac{dv}{ds} = \frac{(\varepsilon - u^2 - 6 u^4 v^2) u}{2(1 + u^6)}$ (13)

This flow, shown in Fig. 3, exhibits a saddle point at (u, v) = (0, 0) and two centers at $(u, v) = (\pm \sqrt{\varepsilon}, 0)$. The separatrix, which flows through (0, 0), has C = 0. All the phase curves are bounded.

(e) The equation of motion can be taken as $\dot{H} = 0$, which yields

$$\left(1 + \left[z'(\rho)\right]^2\right)\ddot{\rho} + z'(\rho)\,z''(\rho)\,\dot{\rho}^2 = \omega^2\rho - g\,z'(\rho)\;.$$
(14)

Figure 2: Level sets of the function $C(u, v) = (1 + u^2)v^2 - u^2$ superimposed on the phase flow $\dot{u} = v$, $\dot{v} = u(1 - v^2)/(1 + u^2)$. Note that the phase curves are unbounded.

We can expand about an equilibrium solution $gz'(\rho^*) = \omega^2 \rho^*$, writing $\rho = \rho^* + \delta \rho$, in which case

$$\delta\ddot{\rho} = -\Omega^2 \,\delta\rho \qquad , \qquad \Omega^2 = \frac{gz''(\rho^*) - \omega^2}{1 + \left[z'(\rho^*)\right]^2} \,. \tag{15}$$

Thus, the equilibrium at ρ^* is stable if $\omega^2 < gz''(\rho^*)$ and unstable if $\omega^2 > gz''(\rho^*)$.

We can go even farther in this analysis, using the conservation of H, which allows us to write the motion as a first order ODE,

$$dt = \pm \frac{\sqrt{1 + [z'(\rho)]^2}}{\sqrt{\frac{2}{m} [H - U_{\text{eff}}(\rho)]}} \, d\rho \,.$$
(16)

Identifying the turning points as solutions to

$$H = U_{\text{eff}}(\rho_{\pm}) , \qquad (17)$$

we have the period for motion T(H) is

$$T(H) = \sqrt{\frac{m}{2}} \int_{\rho_{-}(H)}^{\rho_{+}(H)} d\rho \sqrt{\frac{1 + [z'(\rho)]^{2}}{H - U_{\text{eff}}(\rho)}} .$$
(18)

Figure 3: Level sets of the function $C(u, v) = (1 + u^6) v^2 + \frac{1}{4}u^4 - \frac{1}{2}\varepsilon u^2$ superimposed on the phase flow $\dot{u} = v$, $\dot{v} = \frac{1}{2}u(\varepsilon - u^2 - 6u^4v^2)/(1 + u^6)$, for $\varepsilon = 1$. There are two centers, at $(\pm 1, 0)$, and a saddle at (0, 0). All phase curves are bounded.

For the case $z(\rho) = \rho^2/2b$, we have

$$T(H) = \frac{4}{\sqrt{\omega_{\rm c}^2 - \omega^2}} \int_0^{\pi/2} d\theta \sqrt{1 + \frac{2H\sin^2\theta}{mb^2(\omega_{\rm c}^2 - \omega^2)}} .$$
(19)

(g) If we write $G(\rho, z) = z - z(\rho) = 0$ as a constraint, the equations of motion are

$$m\ddot{\rho} = m\omega^2 \rho - \lambda z'(\rho) \tag{20}$$

$$m\ddot{z} = -mg + \lambda . \tag{21}$$

We now eliminate $z = z(\rho)$, in which case

 $\dot{z} = z'(\rho) \dot{\rho} , \qquad \ddot{z} = z'(\rho) \ddot{\rho} + z''(\rho) \dot{\rho}^2 .$ (22)

We may now write

$$\lambda = mg + mz'(\rho)\,\ddot{\rho} + mz''(\rho)\,\dot{\rho}^2 \tag{23}$$

and, substituting this into the first of the equations of motion and collecting terms, we find

$$\left(1 + [z'(\rho)]^2\right)\ddot{\rho} = \omega^2 \rho - gz'(\rho) - z'(\rho)\,z'(\rho)\,\dot{\rho}^2\,.$$
(24)

As we have seen above, this result also follows from $\dot{H} = 0$. We may now solve for λ in terms of ρ and $\dot{\rho}$:

$$\lambda = \frac{m}{1 + [z'(\rho)]^2} \left(g + z''(\rho) \,\dot{\rho}^2 + \omega^2 \rho \, z'(\rho) \right) \,. \tag{25}$$

The force of constraint supplied by the wire is

$$\boldsymbol{Q} = Q\,\hat{\boldsymbol{n}}_{\perp} = (Q_{\rho}\,\hat{\boldsymbol{\rho}} + Q_z\,\hat{\boldsymbol{z}}) \;, \tag{26}$$

where

$$\hat{\mathbf{n}} = \frac{-z'(\rho)\,\hat{\boldsymbol{\rho}} + \hat{\mathbf{z}}}{\sqrt{1 + \left[z'(\rho)\right]^2}} \tag{27}$$

is the unit vector locally orthogonal to the tangent to the curve. Thus,

$$Q = \lambda \cdot \sqrt{1 + [z'(\rho)]^2} = \frac{m \left(g + z''(\rho) \dot{\rho}^2 + \omega^2 \rho \, z'(\rho)\right)}{\sqrt{1 + [z'(\rho)]^2}} \,.$$
(28)

We may further eliminate $\dot{\rho}$ in favor of ρ by invoking conservation of H, which says

$$\dot{\rho}^2 = \frac{\frac{2H}{m} - 2gz(\rho) + \omega^2 \rho^2}{1 + [z'(\rho)]^2} .$$
⁽²⁹⁾

7.34
$$(x,y_n)$$

 $x_m = r\cos\theta + x$, $y_m = -r\sin\theta$
 $x_m = r\cos\theta + x$, $y_m = -r\sin\theta$
 $x_m = r\cos\theta + x$, $y_m = -r\sin\theta$
 $x_m = -r\sin\theta - r\cos\theta$
 $x_m^2 = r^2\cos\theta + r^2\theta^2\sin^2\theta + x^2 - 2rid\cos\theta\sin\theta + 2rix\cos\theta$
 $y_m^2 = r^2\sin^2\theta + r^2\theta^2\cos^2\theta + 2ri\theta\cos\theta\sin\theta + 2rix\cos\theta$
 $y_m^2 = r^2\sin^2\theta + r^2\theta^2\cos^2\theta + 2ri\theta\cos\theta\sin\theta$
 $y_m^2 = r^2\sin^2\theta + r^2\theta^2\cos^2\theta + 2ri\theta\cos\theta\sin\theta$
 $x_n = \frac{1}{2}Mx^2 + \frac{1}{2}m(x_m^2 + y_m^2) - mgy_m$
 $= \frac{1}{2}(M+m)x^2 + \frac{1}{2}m(r^2 + r^2\theta^2 + 2rix(row - \theta\sin\theta)) + mgrsin\theta$
In order to find the reaction of the wedge
on the mass m, we cannot assume r is
constant.
 $y_m = r = 0 = G_1(x, r; \theta)$
To get the egns of motion, we can set $r=R$
with $r = r = 0$.
 $x: \qquad x = aR(\theta\sin\theta + \theta^2\cos\theta)$
 $\theta = \frac{x\sin\theta}{R}$

b)
$$\frac{\partial L}{\partial r} - \frac{d}{dt} \frac{\partial L}{\partial r} = 2 \frac{\partial G}{\partial r}$$

=D mix cos $\Theta - mR \Theta^2 - mgsin \Theta = 2$, for $r = R$,
 $r = r = 0$
Plug in \dot{x} in terms of Θ, Θ :
 $\lambda = \left[\frac{\alpha - 1}{1 - \alpha \sin^2 \Theta}\right] (R \Theta^2 + g \sin \Theta)$
now, find an expression for Θ using
conservation of energy:
Nith r^2 to $\frac{m}{2}(2^2 \theta^2 - 2^2 \theta \theta \sin \theta)$

$$\frac{1}{2} x^{2} + \frac{1}{2} (R\theta^{2} - 2xR\theta \sin \theta) - mgR\sin \theta = -mgR\sin \theta_{0}$$
where θ_{0} is the initial position of m .
we also have $\dot{x} = aR\theta \sin \theta$ from of equ of notion
plug this into the energy expression:
 $\dot{\theta}^{2} = \frac{2g(\sin \theta - \sin \theta_{0})}{R(1 - a\sin^{2}\theta)}$

:. We have the mass reaction:

$$\lambda = -\frac{mM_{g}(3\sin 0 - a\sin^{3} 0 - 2\sin 0)}{(M+M)(1 - a\sin^{2} 0)^{2}}$$

 $L = \frac{1}{2} \left(m_{1} \dot{x}_{1}^{2} + m_{2} \dot{x}_{2}^{2} + m_{3} \dot{x}_{3}^{2} \right) + g(mx_{1} + mx_{2} + mx_{3})$ Constraints are $x_{1} + y = l_{1}$; $x_{2} - y + x_{3} - y = l_{2}$ eques of motion are $0 \quad m_{1}g - m_{1} \quad \frac{d^{2}x_{1}}{dt^{2}} + 2\lambda = 0$ $(2) \quad m_{2}g - m_{2} \quad \frac{d^{2}x_{2}}{dt^{2}} + \lambda = 0$ $(3) \quad M_{3}g - m_{3} \quad \frac{d^{2}x_{3}}{dt^{2}} + \lambda = 0$ The constraints can be combined to give $2x_{1} + x_{2} + x_{3} - (2l_{1} + l_{2}) = 0 \Rightarrow 2\dot{x}_{1} + \dot{x}_{2} + \dot{x}_{3} = 0$ (4)

combine egns () -> () to get

$$2 = \frac{-49}{m_1 + \frac{1}{m_2} + \frac{1}{m_3}}$$

and
$$T_1 = m_1 g - m_1 \dot{x}_1 = -22 = \frac{-89}{m_1 + \frac{1}{m_2} + \frac{1}{m_3}}$$