PHYSICS 110A : CLASSICAL MECHANICS PROBLEM SET \#5

[1] A bead of mass m slides frictionlessly along a wire curve $z=x^{2} / 2 b$, where $b>0$. The wire rotates with angular frequency ω about the $\hat{\boldsymbol{z}}$ axis.
(a) Find the Lagrangian of this system.
(b) Find the Hamiltonian.
(c) Find the effective potential $U_{\text {eff }}(x)$.
(d) Show that the motion is unbounded for $\omega^{2}>\omega_{\mathrm{c}}^{2}$ and find the critical value ω_{c}.
(e) Sketch the phase curves for this system for the cases $\omega^{2}<\omega_{\mathrm{c}}^{2}$ and $\omega^{2}>\omega_{\mathrm{c}}^{2}$.
(f) Find an expression for the period of the motion when $\omega^{2}<\omega_{\mathrm{c}}^{2}$.
(g) Find the force of constraint which keeps the bead on the wire.
[2] Thornton and Marion problem 7-34.
[3] Thornton and Marion problem 7-37.

