PHYSICS 110A : CLASSICAL MECHANICS FINAL EXAM SOLUTIONS

[1] Two blocks and three springs are configured as in Fig. 1. All motion is horizontal. When the blocks are at rest, all springs are unstretched.

Figure 1: A system of masses and springs.
(a) Choose as generalized coordinates the displacement of each block from its equilibrium position, and write the Lagrangian.
[5 points]
(b) Find the T and V matrices.
[5 points]
(c) Suppose

$$
m_{1}=2 m \quad, \quad m_{2}=m \quad, \quad k_{1}=4 k \quad, \quad k_{2}=k \quad, \quad k_{3}=2 k
$$

Find the frequencies of small oscillations.
[5 points]
(d) Find the normal modes of oscillation.
[5 points]
(e) At time $t=0$, mass $\# 1$ is displaced by a distance b relative to its equilibrium position. I.e. $x_{1}(0)=b$. The other initial conditions are $x_{2}(0)=0, \dot{x}_{1}(0)=0$, and $\dot{x}_{2}(0)=0$. Find t^{*}, the next time at which x_{2} vanishes.
[5 points]

Solution

(a) The Lagrangian is

$$
L=\frac{1}{2} m_{1} x_{1}^{2}+\frac{1}{2} m_{2} x_{2}^{2}-\frac{1}{2} k_{1} x_{1}^{2}-\frac{1}{2} k_{2}\left(x_{2}-x_{1}\right)^{2}-\frac{1}{2} k_{3} x_{2}^{2}
$$

(b) The T and V matrices are

$$
\mathrm{T}_{i j}=\frac{\partial^{2} T}{\partial \dot{x}_{i} \partial \dot{x}_{j}}=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right) \quad, \quad \mathrm{V}_{i j}=\frac{\partial^{2} U}{\partial x_{i} \partial x_{j}}=\left(\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right)
$$

(c) We have $m_{1}=2 m, m_{2}=m, k_{1}=4 k, k_{2}=k$, and $k_{3}=2 k$. Let us write $\omega^{2} \equiv \lambda \omega_{0}^{2}$, where $\omega_{0} \equiv \sqrt{k / m}$. Then

$$
\omega^{2} \mathrm{~T}-\mathrm{V}=k\left(\begin{array}{cc}
2 \lambda-5 & 1 \\
1 & \lambda-3
\end{array}\right)
$$

The determinant is

$$
\begin{aligned}
\operatorname{det}\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right) & =\left(2 \lambda^{2}-11 \lambda+14\right) k^{2} \\
& =(2 \lambda-7)(\lambda-2) k^{2} .
\end{aligned}
$$

There are two roots: $\lambda_{-}=2$ and $\lambda_{+}=\frac{7}{2}$, corresponding to the eigenfrequencies

$$
\omega_{-}=\sqrt{\frac{2 k}{m}} \quad, \quad \omega_{+}=\sqrt{\frac{7 k}{2 m}}
$$

(d) The normal modes are determined from $\left(\omega_{a}^{2} \mathrm{~T}-\mathrm{V}\right) \overrightarrow{\psi^{(a)}}=0$. Plugging in $\lambda=2$ we have for the normal mode $\vec{\psi}^{(-)}$

$$
\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{\psi_{1}^{(-)}}{\psi_{2}^{(-)}}=0 \quad \Rightarrow \quad \vec{\psi}^{(-)}=\mathcal{C}_{-}\binom{1}{1}
$$

Plugging in $\lambda=\frac{7}{2}$ we have for the normal mode $\vec{\psi}^{(+)}$

$$
\left(\begin{array}{cc}
2 & 1 \\
1 & \frac{1}{2}
\end{array}\right)\binom{\psi_{1}^{(+)}}{\psi_{2}^{(+)}}=0 \quad \Rightarrow \quad \vec{\psi}^{(+)}=\mathcal{C}_{+}\binom{1}{-2}
$$

The standard normalization $\psi_{i}^{(a)} \mathrm{T}_{i j} \psi_{j}^{(b)}=\delta_{a b}$ gives

$$
\begin{equation*}
\mathcal{C}_{-}=\frac{1}{\sqrt{3 m}} \quad, \quad \mathcal{C}_{2}=\frac{1}{\sqrt{6 m}} \tag{1}
\end{equation*}
$$

(e) The general solution is

$$
\binom{x_{1}}{x_{2}}=A\binom{1}{1} \cos \left(\omega_{-} t\right)+B\binom{1}{-2} \cos \left(\omega_{+} t\right)+C\binom{1}{1} \sin \left(\omega_{-} t\right)+D\binom{1}{-2} \sin \left(\omega_{+} t\right) .
$$

The initial conditions $x_{1}(0)=b, x_{2}(0)=\dot{x}_{1}(0)=\dot{x}_{2}(0)=0$ yield

$$
A=\frac{2}{3} b \quad, \quad B=\frac{1}{3} b \quad, \quad C=0 \quad, \quad D=0 .
$$

Thus,

$$
\begin{aligned}
& x_{1}(t)=\frac{1}{3} b \cdot\left(2 \cos \left(\omega_{-} t\right)+\cos \left(\omega_{+} t\right)\right) \\
& x_{2}(t)=\frac{2}{3} b \cdot\left(\cos \left(\omega_{-} t\right)-\cos \left(\omega_{+} t\right)\right) .
\end{aligned}
$$

Setting $x_{2}\left(t^{*}\right)=0$, we find

$$
\cos \left(\omega_{-} t^{*}\right)=\cos \left(\omega_{+} t^{*}\right) \Rightarrow \pi-\omega_{-} t=\omega_{+} t-\pi \quad \Rightarrow \quad t^{*}=\frac{2 \pi}{\omega_{-}+\omega_{+}}
$$

[2] Two point particles of masses m_{1} and m_{2} interact via the central potential

$$
U(r)=U_{0} \ln \left(\frac{r^{2}}{r^{2}+b^{2}}\right),
$$

where b is a constant with dimensions of length.
(a) For what values of the relative angular momentum ℓ does a circular orbit exist? Find the radius r_{0} of the circular orbit. Is it stable or unstable?
[7 points]
(c) For the case where a circular orbit exists, sketch the phase curves for the radial motion in the (r, \dot{r}) half-plane. Identify the energy ranges for bound and unbound orbits.
[5 points]
(c) Suppose the orbit is nearly circular, with $r=r_{0}+\eta$, where $|\eta| \ll r_{0}$. Find the equation for the shape $\eta(\phi)$ of the perturbation.
[8 points]
(d) What is the angle $\Delta \phi$ through which periapsis changes each cycle? For which value(s) of ℓ does the perturbed orbit not precess?
[5 points]

Solution

(a) The effective potential is

$$
\begin{aligned}
U_{\mathrm{eff}}(r) & =\frac{\ell^{2}}{2 \mu r^{2}}+U(r) \\
& =\frac{\ell^{2}}{2 \mu r^{2}}+U_{0} \ln \left(\frac{r^{2}}{r^{2}+b^{2}}\right) .
\end{aligned}
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{1}\right)$ is the reduced mass. For a circular orbit, we must have $U_{\text {eff }}^{\prime}(r)=0$, or

$$
\frac{l^{2}}{\mu r^{3}}=U^{\prime}(r)=\frac{2 r U_{0} b^{2}}{r^{2}\left(r^{2}+b^{2}\right)} .
$$

The solution is

$$
r_{0}^{2}=\frac{b^{2} \ell^{2}}{2 \mu b^{2} U_{0}-\ell^{2}}
$$

Since $r_{0}^{2}>0$, the condition on ℓ is

$$
\ell<\ell_{\mathrm{c}} \equiv \sqrt{2 \mu b^{2} U_{0}}
$$

For large r, we have

$$
U_{\mathrm{eff}}(r)=\left(\frac{\ell^{2}}{2 \mu}-U_{0} b^{2}\right) \cdot \frac{1}{r^{2}}+\mathcal{O}\left(r^{-4}\right) .
$$

Thus, for $\ell<\ell_{\mathrm{c}}$ the effective potential is negative for sufficiently large values of r. Thus, over the range $\ell<\ell_{\mathrm{c}}$, we must have $U_{\text {eff, min }}<0$, which must be a global minimum, since $U_{\text {eff }}\left(0^{+}\right)=\infty$ and $U_{\text {eff }}(\infty)=0$. Therefore, the circular orbit is stable whenever it exists.
(b) Let $\ell=\epsilon \ell_{\mathrm{c}}$. The effective potential is then

$$
U_{\mathrm{eff}}(r)=U_{0} f(r / b),
$$

where the dimensionless effective potential is

$$
f(s)=\frac{\epsilon^{2}}{s^{2}}-\ln \left(1+s^{-2}\right) .
$$

The phase curves are plotted in Fig. 2.
(c) The energy is

$$
\begin{aligned}
E & =\frac{1}{2} \mu \dot{r}^{2}+U_{\mathrm{eff}}(r) \\
& =\frac{\ell^{2}}{2 \mu r^{4}}\left(\frac{d r}{d \phi}\right)^{2}+U_{\mathrm{eff}}(r),
\end{aligned}
$$

where we've used $\dot{r}=\dot{\phi} r^{\prime}$ along with $\ell=\mu r^{2} \dot{\phi}$. Writing $r=r_{0}+\eta$ and differentiating E with respect to ϕ, we find

$$
\eta^{\prime \prime}=-\beta^{2} \eta \quad, \quad \beta^{2}=\frac{\mu r_{0}^{4}}{\ell^{2}} U_{\mathrm{eff}}^{\prime \prime}\left(r_{0}\right)
$$

For our potential, we have

$$
\beta^{2}=2-\frac{\ell^{2}}{\mu b^{2} U_{0}}=2\left(1-\frac{\ell^{2}}{\ell_{\mathrm{c}}^{2}}\right)
$$

The solution is

$$
\begin{equation*}
\eta(\phi)=A \cos (\beta \phi+\delta) \tag{2}
\end{equation*}
$$

where A and δ are constants.
(d) The change of periapsis per cycle is

$$
\Delta \phi=2 \pi\left(\beta^{-1}-1\right)
$$

If $\beta>1$ then $\Delta \phi<0$ and periapsis advances each cycle (i.e. it comes sooner with every cycle). If $\beta<1$ then $\Delta \phi>0$ and periapsis recedes. For $\beta=1$, which means $\ell=\sqrt{\mu b^{2} U_{0}}$, there is no precession and $\Delta \phi=0$.

Figure 2: Phase curves for the scaled effective potential $f(s)=\epsilon s^{-2}-\ln \left(1+s^{-2}\right)$, with $\epsilon=\frac{1}{\sqrt{2}}$. Here, $\epsilon=\ell / \ell_{\mathrm{c}}$. The dimensionless time variable is $\tau=t \cdot \sqrt{U_{0} / m b^{2}}$.
[3] A particle of charge e moves in three dimensions in the presence of a uniform magnetic field $\boldsymbol{B}=B_{0} \hat{\boldsymbol{z}}$ and a uniform electric field $\boldsymbol{E}=E_{0} \hat{\boldsymbol{x}}$. The potential energy is

$$
U(\boldsymbol{r}, \dot{\boldsymbol{r}})=-e E_{0} x-\frac{e}{c} B_{0} x \dot{y},
$$

where we have chosen the gauge $\boldsymbol{A}=B_{0} x \hat{\boldsymbol{y}}$.
(a) Find the canonical momenta p_{x}, p_{y}, and p_{z}.
[7 points]
(b) Identify all conserved quantities.
[8 points]
(c) Find a complete, general solution for the motion of the system $\{x(t), y(t), x(t)\}$. [10 points]

Solution

(a) The Lagrangian is

$$
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\frac{e}{c} B_{0} x \dot{y}+e E_{0} x .
$$

The canonical momenta are

$$
p_{x}=\frac{\partial L}{\partial \dot{x}}=m \dot{x}
$$

$$
p_{y}=\frac{\partial L}{\partial \dot{y}}=m \dot{y}+\frac{e}{c} B_{0} x
$$

$$
p_{x}=\frac{\partial L}{\partial \dot{z}}=m \dot{z}
$$

(b) There are three conserved quantities. First is the momentum p_{y}, since $F_{y}=\frac{\partial L}{\partial y}=0$. Second is the momentum p_{z}, since $F_{y}=\frac{\partial L}{\partial z}=0$. The third conserved quantity is the Hamiltonian, since $\frac{\partial L}{\partial t}=0$. We have

$$
\begin{aligned}
& H=p_{x} \dot{x}+p_{y} \dot{y}+p_{z} \dot{z}-L \\
& \quad \Rightarrow \quad H=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-e E_{0} x
\end{aligned}
$$

(c) The equations of motion are

$$
\begin{aligned}
\ddot{x}-\omega_{\mathrm{c}} \dot{y} & =\frac{e}{m} E_{0} \\
\ddot{y}+\omega_{\mathrm{c}} \dot{x} & =0 \\
\ddot{z} & =0 .
\end{aligned}
$$

The second equation can be integrated once to yield $\dot{y}=\omega_{\mathrm{c}}\left(x_{0}-x\right)$, where x_{0} is a constant. Substituting this into the first equation gives

$$
\ddot{x}+\omega_{\mathrm{c}}^{2} x=\omega_{\mathrm{c}}^{2} x_{0}+\frac{e}{m} E_{0} .
$$

This is the equation of a constantly forced harmonic oscillator. We can therefore write the general solution as

$$
x(t)=x_{0}+\frac{e E_{0}}{m \omega_{\mathrm{c}}^{2}}+A \cos \left(\omega_{\mathrm{c}} t+\delta\right)
$$

$$
y(t)=y_{0}-\frac{e E_{0}}{m \omega_{\mathrm{c}}} t-A \sin \left(\omega_{\mathrm{c}} t+\delta\right)
$$

$$
z(t)=z_{0}+\dot{z}_{0} t
$$

Note that there are six constants, $\left\{A, \delta, x_{0}, y_{0}, z_{0}, \dot{z}_{0}\right\}$, are are required for the general solution of three coupled second order ODEs.
[4] An $N=1$ dynamical system obeys the equation

$$
\frac{d u}{d t}=r u+2 b u^{2}-u^{3}
$$

where r is a control parameter, and where $b>0$ is a constant.
(a) Find and classify all bifurcations for this system.
[7 points]
(b) Sketch the fixed points u^{*} versus r.
[6 points]
Now let $b=3$. At time $t=0$, the initial value of u is $u(0)=1$. The control parameter r is then increased very slowly from $r=-20$ to $r=+20$, and then decreased very slowly back down to $r=-20$.
(c) What is the value of u when $r=-5$ on the increasing part of the cycle?
[3 points]
(d) What is the value of u when $r=+16$ on the increasing part of the cycle?
[3 points]
(e) What is the value of u when $r=+16$ on the decreasing part of the cycle?
[3 points]
(f) What is the value of u when $r=-5$ on the decreasing part of the cycle?
[3 points]

Solution

(a) Setting $\dot{u}=0$ we obtain

$$
\left(u^{2}-2 b u-r\right) u=0
$$

The roots are

$$
u=0 \quad, \quad u=b \pm \sqrt{b^{2}+r}
$$

The roots at $u=u_{ \pm}=b \pm \sqrt{b^{2}+r}$ are only present when $r>-b^{2}$. At $r=-b^{2}$ there is a saddle-node bifurcation. The fixed point $u=u_{-}$crosses the fixed point at $u=0$ at $r=0$, at which the two fixed points exchange stability. This corresponds to a transcritical bifurcation. In Fig. 3 we plot \dot{u} / b^{3} versus u / b for several representative values of r / b^{2}. Note that, defining $\tilde{u}=u / b, \tilde{r}=r / b^{2}$, and $\tilde{t}=b^{2} t$ that our $N=1$ system may be written

$$
\frac{d \tilde{u}}{d \tilde{t}}=\left(\tilde{r}+2 \tilde{u}-\tilde{u}^{2}\right) \tilde{u}
$$

which shows that it is only the dimensionless combination $\tilde{r}=r / b^{2}$ which enters into the location and classification of the bifurcations.

Figure 3: Plot of dimensionless 'velocity' \dot{u} / b^{3} versus dimensionless 'coordinate' u / b for several values of the dimensionless control parameter $\tilde{r}=r / b^{2}$.
(b) A sketch of the fixed points u^{*} versus r is shown in Fig. 4. Note the two bifurcations at $r=-b^{2}$ (saddle-node) and $r=0$ (transcritical).
(c) For $r=-20<-b^{2}=-9$, the initial condition $u(0)=1$ flows directly toward the stable fixed point at $u=0$. Since the approach to the FP is asymptotic, u remains slightly positive even after a long time. When $r=-5$, the FP at $u=0$ is still stable. Answer: $\underline{u=0}$.
(d) As soon as r becomes positive, the FP at $u^{*}=0$ becomes unstable, and u flows to the upper branch u_{+}. When $r=16$, we have $u=3+\sqrt{3^{2}+16}=8$. Answer: $\underline{u=8}$.
(e) Coming back down from larger r, the upper FP branch remains stable, thus, $u=8$ at $r=16$ on the way down as well. Answer: $\underline{u=8}$.

Figure 4: Fixed points and their stability versus control parameter for the $N=1$ system $\dot{u}=r u+2 b u^{2}-u^{3}$. Solid lines indicate stable fixed points; dashed lines indicate unstable fixed points. There is a saddle-node bifurcation at $r=-b^{2}$ and a transcritical bifurcation at $r=0$. The hysteresis loop in the upper half plane $u>0$ is shown. For $u<0$ variations of the control parameter r are reversible and there is no hysteresis.
(f) Now when r first becomes negative on the way down, the upper branch u_{+}remains stable. Indeed it remains stable all the way down to $r=-b^{2}$, the location of the saddlenode bifurcation, at which point the solution $u=u_{+}$simply vanishes and the flow is toward $u=0$ again. Thus, for $r=-5$ on the way down, the system remains on the upper branch, in which case $u=3+\sqrt{3^{2}-5}=5$. Answer: $\underline{u=5}$.

