
PHYSICS 110A : CLASSICAL MECHANICS
FINAL EXAM SOLUTIONS

[1] Two blocks and three springs are configured as in Fig. 1. All motion is horizontal.
When the blocks are at rest, all springs are unstretched.

Figure 1: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equilibrium
position, and write the Lagrangian.
[5 points]

(b) Find the T and V matrices.
[5 points]

(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k2 = k , k3 = 2k ,

Find the frequencies of small oscillations.
[5 points]

(d) Find the normal modes of oscillation.
[5 points]

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position.

I.e. x1(0) = b. The other initial conditions are x2(0) = 0, ẋ1(0) = 0, and ẋ2(0) = 0.

Find t∗, the next time at which x2 vanishes.
[5 points]

Solution

(a) The Lagrangian is

L = 1
2m1 x

2
1 + 1

2m2 x
2
2 − 1

2k1 x
2
1 − 1

2k2 (x2 − x1)
2 − 1

2k3 x
2
2
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(b) The T and V matrices are

Tij =
∂2T

∂ẋi ∂ẋj
=

(

m1 0

0 m2

)

, Vij =
∂2U

∂xi ∂xj
=

(

k1 + k2 −k2

−k2 k2 + k3

)

(c) We have m1 = 2m, m2 = m, k1 = 4k, k2 = k, and k3 = 2k. Let us write ω2 ≡ λω2
0 ,

where ω0 ≡
√

k/m. Then

ω2T − V = k

(

2λ− 5 1
1 λ− 3

)

.

The determinant is

det (ω2T − V) = (2λ2 − 11λ + 14) k2

= (2λ− 7) (λ − 2) k2 .

There are two roots: λ− = 2 and λ+ = 7
2 , corresponding to the eigenfrequencies

ω− =

√

2k

m
, ω+ =

√

7k

2m

(d) The normal modes are determined from (ω2
aT−V) ~ψ(a) = 0. Plugging in λ = 2 we have

for the normal mode ~ψ(−)

(

−1 1
1 −1

)(

ψ(−)

1

ψ(−)

2

)

= 0 ⇒ ~ψ(−) = C−
(

1
1

)

Plugging in λ = 7
2 we have for the normal mode ~ψ(+)

(

2 1
1 1

2

)(

ψ(+)

1

ψ(+)

2

)

= 0 ⇒ ~ψ(+) = C+

(

1
−2

)

The standard normalization ψ
(a)
i Tij ψ

(b)
j = δab gives

C− =
1√
3m

, C2 =
1√
6m

. (1)

(e) The general solution is

(

x1

x2

)

= A

(

1
1

)

cos(ω−t) +B

(

1
−2

)

cos(ω+t) + C

(

1
1

)

sin(ω−t) +D

(

1
−2

)

sin(ω+t) .
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The initial conditions x1(0) = b, x2(0) = ẋ1(0) = ẋ2(0) = 0 yield

A = 2
3b , B = 1

3b , C = 0 , D = 0 .

Thus,

x1(t) = 1
3b ·

(

2 cos(ω−t) + cos(ω+t)
)

x2(t) = 2
3b ·

(

cos(ω−t) − cos(ω+t)
)

.

Setting x2(t
∗) = 0, we find

cos(ω−t
∗) = cos(ω+t

∗) ⇒ π − ω−t = ω+t− π ⇒ t∗ =
2π

ω− + ω+
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[2] Two point particles of masses m1 and m2 interact via the central potential

U(r) = U0 ln

(

r2

r2 + b2

)

,

where b is a constant with dimensions of length.

(a) For what values of the relative angular momentum ℓ does a circular orbit exist? Find

the radius r0 of the circular orbit. Is it stable or unstable?
[7 points]

(c) For the case where a circular orbit exists, sketch the phase curves for the radial motion
in the (r, ṙ) half-plane. Identify the energy ranges for bound and unbound orbits.
[5 points]

(c) Suppose the orbit is nearly circular, with r = r0+η, where |η| ≪ r0. Find the equation
for the shape η(φ) of the perturbation.
[8 points]

(d) What is the angle ∆φ through which periapsis changes each cycle? For which value(s)
of ℓ does the perturbed orbit not precess?
[5 points]

Solution

(a) The effective potential is

Ueff(r) =
ℓ2

2µr2
+ U(r)

=
ℓ2

2µr2
+ U0 ln

(

r2

r2 + b2

)

.

where µ = m1m2/(m1 + m1) is the reduced mass. For a circular orbit, we must have
U ′

eff(r) = 0, or
l2

µr3
= U ′(r) =

2rU0b
2

r2 (r2 + b2)
.

The solution is

r20 =
b2ℓ2

2µb2U0 − ℓ2

Since r20 > 0, the condition on ℓ is

ℓ < ℓc ≡
√

2µb2U0
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For large r, we have

Ueff(r) =

(

ℓ2

2µ
− U0 b

2

)

· 1

r2
+ O(r−4) .

Thus, for ℓ < ℓc the effective potential is negative for sufficiently large values of r. Thus,
over the range ℓ < ℓc, we must have Ueff,min < 0, which must be a global minimum, since

Ueff(0+) = ∞ and Ueff(∞) = 0. Therefore, the circular orbit is stable whenever it exists.

(b) Let ℓ = ǫ ℓc. The effective potential is then

Ueff(r) = U0 f(r/b) ,

where the dimensionless effective potential is

f(s) =
ǫ2

s2
− ln(1 + s−2) .

The phase curves are plotted in Fig. 2.

(c) The energy is

E = 1
2µṙ

2 + Ueff(r)

=
ℓ2

2µr4

(

dr

dφ

)2

+ Ueff(r) ,

where we’ve used ṙ = φ̇ r′ along with ℓ = µr2φ̇. Writing r = r0 + η and differentiating E
with respect to φ, we find

η′′ = −β2η , β2 =
µr40
ℓ2

U ′′
eff(r0) .

For our potential, we have

β2 = 2 − ℓ2

µb2U0
= 2

(

1 − ℓ2

ℓ2c

)

The solution is

η(φ) = A cos(βφ+ δ) (2)

where A and δ are constants.

(d) The change of periapsis per cycle is

∆φ = 2π
(

β−1 − 1
)

If β > 1 then ∆φ < 0 and periapsis advances each cycle (i.e. it comes sooner with every
cycle). If β < 1 then ∆φ > 0 and periapsis recedes. For β = 1, which means ℓ =

√

µb2U0,
there is no precession and ∆φ = 0.
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Figure 2: Phase curves for the scaled effective potential f(s) = ǫ s−2 − ln(1 + s−2), with
ǫ = 1√

2
. Here, ǫ = ℓ/ℓc. The dimensionless time variable is τ = t ·

√

U0/mb2.
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[3] A particle of charge e moves in three dimensions in the presence of a uniform magnetic

field B = B0 ẑ and a uniform electric field E = E0 x̂. The potential energy is

U(r, ṙ) = −eE0 x− e

c
B0 x ẏ ,

where we have chosen the gauge A = B0 x ŷ.

(a) Find the canonical momenta px, py, and pz.
[7 points]

(b) Identify all conserved quantities.
[8 points]

(c) Find a complete, general solution for the motion of the system
{

x(t), y(t), x(t)
}

.
[10 points]

Solution

(a) The Lagrangian is

L = 1
2m(ẋ2 + ẏ2 + ż2) +

e

c
B0 x ẏ + eE0 x .

The canonical momenta are

px =
∂L

∂ẋ
= mẋ

py =
∂L

∂ẏ
= mẏ +

e

c
B0 x

px =
∂L

∂ż
= mż

(b) There are three conserved quantities. First is the momentum py, since Fy = ∂L
∂y

= 0.

Second is the momentum pz, since Fy = ∂L
∂z

= 0. The third conserved quantity is the

Hamiltonian, since ∂L
∂t

= 0. We have

H = px ẋ+ py ẏ + pz ż − L

⇒ H = 1
2m(ẋ2 + ẏ2 + ż2) − eE0 x
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(c) The equations of motion are

ẍ− ωc ẏ =
e

m
E0

ÿ + ωc ẋ = 0

z̈ = 0 .

The second equation can be integrated once to yield ẏ = ωc(x0−x), where x0 is a constant.
Substituting this into the first equation gives

ẍ+ ω2
c x = ω2

c x0 +
e

m
E0 .

This is the equation of a constantly forced harmonic oscillator. We can therefore write the
general solution as

x(t) = x0 +
eE0

mω2
c

+A cos
(

ωct+ δ
)

y(t) = y0 −
eE0

mωc
t−A sin

(

ωct+ δ
)

z(t) = z0 + ż0 t

Note that there are six constants,
{

A, δ, x0, y0, z0, ż0
}

, are are required for the general
solution of three coupled second order ODEs.
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[4] An N = 1 dynamical system obeys the equation

du

dt
= ru+ 2bu2 − u3 ,

where r is a control parameter, and where b > 0 is a constant.

(a) Find and classify all bifurcations for this system.
[7 points]

(b) Sketch the fixed points u∗ versus r.
[6 points]

Now let b = 3. At time t = 0, the initial value of u is u(0) = 1. The control parameter
r is then increased very slowly from r = −20 to r = +20, and then decreased very
slowly back down to r = −20.

(c) What is the value of u when r = −5 on the increasing part of the cycle?
[3 points]

(d) What is the value of u when r = +16 on the increasing part of the cycle?
[3 points]

(e) What is the value of u when r = +16 on the decreasing part of the cycle?
[3 points]

(f) What is the value of u when r = −5 on the decreasing part of the cycle?
[3 points]

Solution

(a) Setting u̇ = 0 we obtain
(u2 − 2bu− r)u = 0 .

The roots are
u = 0 , u = b±

√

b2 + r .

The roots at u = u± = b ±
√
b2 + r are only present when r > −b2. At r = −b2 there

is a saddle-node bifurcation. The fixed point u = u− crosses the fixed point at u = 0 at
r = 0, at which the two fixed points exchange stability. This corresponds to a transcritical

bifurcation. In Fig. 3 we plot u̇/b3 versus u/b for several representative values of r/b2. Note
that, defining ũ = u/b, r̃ = r/b2, and t̃ = b2t that our N = 1 system may be written

dũ

dt̃
=
(

r̃ + 2ũ− ũ2
)

ũ ,

which shows that it is only the dimensionless combination r̃ = r/b2 which enters into the
location and classification of the bifurcations.
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Figure 3: Plot of dimensionless ‘velocity’ u̇/b3 versus dimensionless ‘coordinate’ u/b for
several values of the dimensionless control parameter r̃ = r/b2.

(b) A sketch of the fixed points u∗ versus r is shown in Fig. 4. Note the two bifurcations
at r = −b2 (saddle-node) and r = 0 (transcritical).

(c) For r = −20 < −b2 = −9, the initial condition u(0) = 1 flows directly toward the stable
fixed point at u = 0. Since the approach to the FP is asymptotic, u remains slightly positive
even after a long time. When r = −5, the FP at u = 0 is still stable. Answer: u = 0.

(d) As soon as r becomes positive, the FP at u∗ = 0 becomes unstable, and u flows to the

upper branch u+. When r = 16, we have u = 3 +
√

32 + 16 = 8. Answer: u = 8.

(e) Coming back down from larger r, the upper FP branch remains stable, thus, u = 8 at
r = 16 on the way down as well. Answer: u = 8.
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Figure 4: Fixed points and their stability versus control parameter for the N = 1 system
u̇ = ru+ 2bu2 − u3. Solid lines indicate stable fixed points; dashed lines indicate unstable
fixed points. There is a saddle-node bifurcation at r = −b2 and a transcritical bifurcation
at r = 0. The hysteresis loop in the upper half plane u > 0 is shown. For u < 0 variations
of the control parameter r are reversible and there is no hysteresis.

(f) Now when r first becomes negative on the way down, the upper branch u+ remains
stable. Indeed it remains stable all the way down to r = −b2, the location of the saddle-
node bifurcation, at which point the solution u = u+ simply vanishes and the flow is toward
u = 0 again. Thus, for r = −5 on the way down, the system remains on the upper branch,
in which case u = 3 +

√
32 − 5 = 5. Answer: u = 5.
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