PHYSICS 110A : CLASSICAL MECHANICS FINAL EXAM

[1] Two blocks and three springs are configured as in Fig. 1. All motion is horizontal. When the blocks are at rest, all springs are unstretched.

Figure 1: A system of masses and springs.
(a) Choose as generalized coordinates the displacement of each block from its equilibrium position, and write the Lagrangian.
[5 points]
(b) Find the T and V matrices.
[5 points]
(c) Suppose

$$
m_{1}=2 m \quad, \quad m_{2}=m \quad, \quad k_{1}=4 k \quad, \quad k_{2}=k \quad, \quad k_{3}=2 k
$$

Find the frequencies of small oscillations.
[5 points]
(d) Find the normal modes of oscillation.
[5 points]
(e) At time $t=0$, mass $\# 1$ is displaced by a distance b relative to its equilibrium position. I.e. $x_{1}(0)=b$. The other initial conditions are $x_{2}(0)=0, \dot{x}_{1}(0)=0$, and $\dot{x}_{2}(0)=0$. Find t^{*}, the next time at which x_{2} vanishes.
[5 points]
[2] Two point particles of masses m_{1} and m_{2} interact via the central potential

$$
U(r)=U_{0} \ln \left(\frac{r^{2}}{r^{2}+b^{2}}\right)
$$

where b is a constant with dimensions of length.
(a) For what values of the relative angular momentum ℓ does a circular orbit exist? Find the radius r_{0} of the circular orbit. Is it stable or unstable?
[7 points]
(c) For the case where a circular orbit exists, sketch the phase curves for the radial motion in the (r, \dot{r}) half-plane. Identify the energy ranges for bound and unbound orbits.
[5 points]
(c) Suppose the orbit is nearly circular, with $r=r_{0}+\eta$, where $|\eta| \ll r_{0}$. Find the equation for the shape $\eta(\phi)$ of the perturbation.
[8 points]
(d) What is the angle $\Delta \phi$ through which periapsis changes each cycle? For which value(s) of ℓ does the perturbed orbit not precess?
[5 points]
[3] A particle of charge e moves in three dimensions in the presence of a uniform magnetic field $\boldsymbol{B}=B_{0} \hat{\boldsymbol{z}}$ and a uniform electric field $\boldsymbol{E}=E_{0} \hat{\boldsymbol{x}}$. The potential energy is

$$
U(\boldsymbol{r}, \dot{\boldsymbol{r}})=-e E_{0} x-\frac{e}{c} B_{0} x \dot{y},
$$

where we have chosen the gauge $\boldsymbol{A}=B_{0} x \hat{\boldsymbol{y}}$.
(a) Find the canonical momenta p_{x}, p_{y}, and p_{z}. [7 points]
(b) Identify all conserved quantities.
[8 points]
(c) Find a complete, general solution for the motion of the system $\{x(t), y(t), x(t)\}$. [10 points]
[4] An $N=1$ dynamical system obeys the equation

$$
\frac{d u}{d t}=r u+2 b u^{2}-u^{3}
$$

where r is a control parameter, and where $b>0$ is a constant.
(a) Find and classify all bifurcations for this system.
[7 points]
(b) Sketch the fixed points u^{*} versus r.
[6 points]
Now let $b=3$. At time $t=0$, the initial value of u is $u(0)=1$. The control parameter r is then increased very slowly from $r=-20$ to $r=+20$, and then decreased very slowly back down to $r=-20$.
(c) What is the value of u when $r=-5$ on the increasing part of the cycle?
[3 points]
(d) What is the value of u when $r=+16$ on the increasing part of the cycle? [3 points]
(e) What is the value of u when $r=+16$ on the decreasing part of the cycle? [3 points]
(f) What is the value of u when $r=-5$ on the decreasing part of the cycle? [3 points]

