PHYSICS 110A : CLASSICAL MECHANICS FINAL EXAM

[1] Two blocks and three springs are configured as in Fig. 1. All motion is horizontal. When the blocks are at rest, all springs are unstretched.

Figure 1: A system of masses and springs.

- (a) Choose as generalized coordinates the displacement of each block from its equilibrium position, and write the Lagrangian.[5 points]
- (b) Find the T and V matrices.[5 points]
- (c) Suppose

$$m_1 = 2m$$
 , $m_2 = m$, $k_1 = 4k$, $k_2 = k$, $k_3 = 2k$,

Find the frequencies of small oscillations. [5 points]

- (d) Find the normal modes of oscillation.[5 points]
- (e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position. *I.e.* x₁(0) = b. The other initial conditions are x₂(0) = 0, x₁(0) = 0, and x₂(0) = 0.
 Find t*, the next time at which x₂ vanishes.
 [5 points]

[2] Two point particles of masses m_1 and m_2 interact via the central potential

$$U(r) = U_0 \, \ln \left(\frac{r^2}{r^2 + b^2} \right) \,, \label{eq:U}$$

where b is a constant with dimensions of length.

- (a) For what values of the relative angular momentum ℓ does a circular orbit exist? Find the radius r_0 of the circular orbit. Is it stable or unstable? [7 points]
- (c) For the case where a circular orbit exists, sketch the phase curves for the radial motion in the (r, r) half-plane. Identify the energy ranges for bound and unbound orbits.
 [5 points]
- (c) Suppose the orbit is nearly circular, with $r = r_0 + \eta$, where $|\eta| \ll r_0$. Find the equation for the shape $\eta(\phi)$ of the perturbation. [8 points]
- (d) What is the angle Δφ through which periapsis changes each cycle? For which value(s) of l does the perturbed orbit not precess?
 [5 points]

[3] A particle of charge e moves in three dimensions in the presence of a uniform magnetic field $\boldsymbol{B} = B_0 \hat{\boldsymbol{z}}$ and a uniform electric field $\boldsymbol{E} = E_0 \hat{\boldsymbol{x}}$. The potential energy is

$$U(\mathbf{r}, \dot{\mathbf{r}}) = -e E_0 x - \frac{e}{c} B_0 x \dot{y} ,$$

where we have chosen the gauge $\boldsymbol{A}=B_{0}\,x\,\hat{\boldsymbol{y}}.$

- (a) Find the canonical momenta p_x , p_y , and p_z . [7 points]
- (b) Identify all conserved quantities.[8 points]
- (c) Find a complete, general solution for the motion of the system $\{x(t), y(t), x(t)\}$. [10 points]

[4] An N = 1 dynamical system obeys the equation

$$\frac{du}{dt} = ru + 2bu^2 - u^3 \, ,$$

where r is a control parameter, and where b > 0 is a constant.

- (a) Find and classify all bifurcations for this system.[7 points]
- (b) Sketch the fixed points u* versus r.
 [6 points]
 Now let b = 3. At time t = 0, the initial value of u is u(0) = 1. The control parameter r is then increased very slowly from r = -20 to r = +20, and then decreased very slowly back down to r = -20.
- (c) What is the value of u when r = -5 on the *increasing* part of the cycle? [3 points]
- (d) What is the value of u when r = +16 on the *increasing* part of the cycle?[3 points]
- (e) What is the value of u when r = +16 on the decreasing part of the cycle?[3 points]
- (f) What is the value of u when r = -5 on the *decreasing* part of the cycle? [3 points]