Formulas:

Relativistic energy -momentum relation $E=\sqrt{m^{2} c^{4}+p^{2} c^{2}} \quad ; \quad \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron rest mass : $m_{\mathrm{e}}=0.511 \mathrm{MeV} / \mathrm{c}^{2} ;$ Proton : $m_{p}=938.26 \mathrm{MeV} / c^{2} ;$ Neutron : $\mathrm{m}_{\mathrm{n}}=939.55 \mathrm{MeV} / \mathrm{c}^{2}$
Planck's law: $u(\lambda)=n(\lambda) \bar{E}(\lambda) \quad ; \quad n(\lambda)=\frac{8 \pi}{\lambda^{4}} \quad ; \quad \bar{E}(\lambda)=\frac{h c}{\lambda} \frac{1}{e^{h c / \lambda k_{B} T}-1}$
Energy in a mode/oscillator: $E_{f}=n h f ;$ probability $P(E) \propto e^{-E / k_{B} T}$
Stefan's law : $R=\sigma T^{4} ; \sigma=5.67 \times 10^{-8} W / m^{2} K^{4} ; R=c U / 4, U=\int_{0}^{\infty} u(\lambda) d \lambda$
Wien's displacement law : $\lambda_{m} T=\frac{h c}{4.96 k_{B}}$
Photons: $E=p c ; E=h f ; \mathrm{p}=\mathrm{h} / \lambda ; \quad f=c / \lambda$
Photoelectric effect: $e V_{0}=\left(\frac{1}{2} m v^{2}\right)_{\max }=h f-\phi \quad, \quad \phi \equiv$ work function
Compton scattering: $\quad \lambda^{\prime}-\lambda=\frac{\mathrm{h}}{\mathrm{m}_{\mathrm{e}} c}(1-\cos \theta)$
Rutherford scattering: $\quad b=\frac{k q_{\alpha} Q}{m_{\alpha} \nu^{2}} \cot (\theta / 2) \quad ; \quad \Delta N \propto \frac{1}{\sin ^{4}(\theta / 2)}$
Constants: $h c=12,400 \mathrm{eVA} ; \hbar c=1,973 \mathrm{eVA} ; k_{B}=1 / 11,600 \mathrm{eV} / \mathrm{K} ; k e^{2}=14.4 \mathrm{eVA}$
Electrostatics : $F=\frac{k q_{1} q_{2}}{r^{2}}$ (force) ; $U=q_{0} V$ (potential energy) ; $V=\frac{k q}{r}$ (potential)

Hydrogen spectrum: $\frac{1}{\lambda}=R\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right) \quad ; \quad R=1.097 \times 10^{7} m^{-1}=\frac{1}{911.3 A}$
Bohr atom : $E_{n}=-\frac{k e^{2} Z}{2 r_{n}}=-\frac{Z^{2} E_{0}}{n^{2}} ; E_{0}=\frac{k e^{2}}{2 a_{0}}=\frac{m k^{2} e^{4}}{2 \hbar^{2}}=13.6 e \mathrm{~V} ; E_{n}=E_{k i n}+E_{p o t}, E_{k i n}=-E_{p o t} / 2=-E_{n}$ $h f=E_{i}-E_{f} ; r_{n}=r_{0} n^{2} ; r_{0}=\frac{a_{0}}{Z} ; a_{0}=\frac{\hbar^{2}}{m k e^{2}}=0.529 A \quad ; \quad L=m v r=n \hbar \quad$ angular momentum X - ray spectra : $f^{1 / 2}=A_{n}(Z-b) ; \mathrm{K}: b=1, \mathrm{~L}: b=7.4$
de Broglie : $\lambda=\frac{h}{p} ; f=\frac{E}{h} ; \omega=2 \pi f ; k=\frac{2 \pi}{\lambda} ; \quad E=\hbar \omega ; p=\hbar k \quad ; \quad E=\frac{p^{2}}{2 m}$ group and phase velocity : $v_{g}=\frac{d \omega}{d k} ; v_{p}=\frac{\omega}{k} ;$ Heisenberg : $\Delta x \Delta p \sim \hbar ; \Delta t \Delta E \sim \hbar$
Wave function $\quad \Psi(x, t)=|\Psi(x, t)| \mathrm{e}^{\mathrm{i} \theta(x, t)} ; \quad P(x, t) d x=|\Psi(x, t)|^{2} d x=$ probability
Schrodinger equation: $-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2} \Psi}{\partial x^{2}}+\mathrm{V}(\mathrm{x}) \Psi(\mathrm{x}, \mathrm{t})=\mathrm{i} \hbar \frac{\partial \Psi}{\partial t} \quad ; \quad \Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{} \hbar^{t}}$
Time - independent Schrodinger equation: $\quad-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2} \psi}{\partial x^{2}}+\mathrm{V}(\mathrm{x}) \psi(\mathrm{x})=\mathrm{E} \psi(\mathrm{x}) ; \quad \int_{-\infty}^{\infty} d x \psi^{*} \psi=1$ ∞ square well: $\psi_{\mathrm{n}}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) ; E_{n}=\frac{\pi^{2} \hbar^{2} n^{2}}{2 m L^{2}} ; \quad \mathrm{x}_{\mathrm{op}}=x, p_{o p}=\frac{\hbar}{i} \frac{\partial}{\partial x} ;<A>=\int_{-\infty}^{\infty} d x \psi^{*} A_{o p} \psi$

Eigenvalues and eigenfunctions: $\mathrm{A}_{\mathrm{op}} \Psi=a \Psi(a$ is a constant $)$; uncertainty: $\quad \Delta A=\sqrt{<A^{2}>-<A>^{2}}$ Harmonic oscillator: $\Psi_{\mathrm{n}}(x)=C_{n} H_{n}(x) e^{-\frac{m \omega}{2 \hbar} x^{2}} ; E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega ; E=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\frac{1}{2} m \omega^{2} A^{2} \quad ; \Delta n= \pm 1$
Step potential: $\quad R=\frac{\left(k_{1}-k_{2}\right)^{2}}{\left(k_{1}+k_{2}\right)^{2}} \quad, \quad T=1-R \quad ; \quad k=\sqrt{\frac{2 m}{\hbar^{2}}(E-V)}$
Tunneling: $\quad \psi(x) \sim \mathrm{e}^{-\alpha x} \quad ; \quad T \sim e^{-2 \alpha \Delta x} \quad ; \quad T \sim e^{-2 \int_{a}^{b} \alpha(x) d x} ; \quad \alpha(x)=\sqrt{\frac{2 m[V(x)-E]}{\hbar^{2}}}$
3 D square well: $\quad \Psi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Psi_{1}(x) \Psi_{2}(y) \Psi_{3}(z) ; \mathrm{E}=\frac{\pi^{2} \hbar^{2}}{2 m}\left(\frac{n_{1}^{2}}{L_{1}^{2}}+\frac{n_{2}^{2}}{L_{2}^{2}}+\frac{n_{3}^{2}}{L_{3}^{2}}\right)$
Spherically symmetric potential: $\Psi_{\mathrm{n}, \ell, \mathrm{m}}(r, \theta, \phi)=R_{n \ell}(r) Y_{\ell m}(\theta, \phi) \quad ; \quad Y_{\ell m}(\theta, \phi)=f_{l m}(\theta) e^{i m \phi}$
Angular momentum: $\overrightarrow{\mathrm{L}}=\vec{r} \times \vec{p} \quad ; \quad L_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \phi} \quad ; \quad L^{2} Y_{\ell m}=\ell(\ell+1) \hbar^{2} Y_{\ell m} \quad ; \quad \mathrm{L}_{\mathrm{z}}=m \hbar$
Radial probability density : $\quad P(r)=r^{2}\left|R_{n, \ell}(r)\right|^{2} ; \quad$ Energy : $\mathrm{E}_{\mathrm{n}}=-13.6 \mathrm{eV} \frac{Z^{2}}{n^{2}}$
Ground state of hydrogen and hydrogen-like ions: $\quad \Psi_{1,0,0}=\frac{1}{\pi^{1 / 2}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}}$
Orbital magnetic moment: $\vec{\mu}=\frac{-e}{2 m_{e}} \vec{L} \quad ; \quad \mu_{\mathrm{z}}=-\mu_{B} m_{l} \quad ; \quad \mu_{\mathrm{B}}=\frac{e \hbar}{2 m_{e}}=5.79 \times 10^{-5} \mathrm{eV} / \mathrm{T}$
Spin $1 / 2: \quad s=\frac{1}{2}, \quad|S|=\sqrt{s(s+1)} \hbar \quad ; \quad S_{z}=m_{s} \hbar ; \quad m_{s}= \pm 1 / 2 \quad ; \quad \vec{\mu}_{s}=\frac{-e}{2 m_{e}} g \vec{S}$
Total angular momentum $: \vec{J}=\vec{L}+\vec{S} ; \quad|J|=\sqrt{j(j+1)} \hbar \quad ; \quad|l-s| \leq j \leq l+s \quad ;-j \leq m_{j} \leq j$
Orbital + spin mag moment : $\quad \vec{\mu}=\frac{-e}{2 m}(\vec{L}+g \vec{S}) \quad ; \quad$ Energy in mag. field: $\quad U=-\vec{\mu} \cdot \vec{B}$
Two particles : $\Psi\left(x_{1}, x_{2}\right)=+/-\Psi\left(x_{2}, x_{1}\right) \quad ; \quad$ symmetric/antisymmetric
Screening in multielectron atoms : $Z \rightarrow Z_{\text {eff }} \quad, \quad 1<Z_{\text {eff }}<Z$
Orbital ordering:
$1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}<3 \mathrm{~d}<4 \mathrm{p}<5 \mathrm{~s}<4 \mathrm{~d}<5 \mathrm{p}<6 \mathrm{~s}<4 \mathrm{f}<5 \mathrm{~d}<6 \mathrm{p}<7 \mathrm{~s}<6 \mathrm{~d} \sim 5 \mathrm{f}$

$$
\begin{aligned}
& I_{n}(\lambda)=\int_{0}^{\infty} d x x^{n} e^{-\lambda x^{2}} ; \quad I_{0}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}} ; \quad I_{1}=\frac{1}{2 \lambda} ; \quad I_{n+2}=-\frac{\partial}{\partial \lambda} I_{n} \\
& f_{M B}(E)=C e^{-E / k T} ; f_{B E}(E)=\frac{1}{e^{\alpha} e^{E / k T}-1} ; \quad f_{F D}(E)=\frac{1}{e^{\alpha} e^{E / k T}+1} ; n(E)=g(E) f(E)
\end{aligned}
$$

$F\left(v_{x}, v_{y}, v_{z}\right)=f\left(v_{x}\right) f\left(v_{y}\right) f\left(v_{z}\right) \quad ; \quad f\left(v_{x}\right)=\left(\frac{m}{2 \pi k T}\right)^{1 / 2} e^{-m v_{x}^{2} / 2 k T} \quad$ (kinetic theory)
Rotation: $E_{R}=\frac{L^{2}}{2 I}, I=\mu R^{2}, \quad$ vibration: $E_{v}=\hbar \omega\left(n+\frac{1}{2}\right), \omega=\sqrt{K / \mu}, \quad \mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ $g(E)=\left[2 \pi(2 m)^{3 / 2} V / h^{3}\right] E^{1 / 2}$ (translation, per spin) ; Equipartition: $\langle E\rangle=k_{B} T / 2$ per degree of freedom Lasers: $B_{12}=B_{21}, \quad A_{21} /\left(B_{21} u(f)\right)=e^{h f / k T}-1 ; \quad u(f)=\left(8 \pi h f^{3} / c^{3}\right) /\left(e^{h f / k T}-1\right)$

Justify all your answers to all problems

Problem 1 (10 pts)
1 mol of Ne gas (monatomic) occupies a volume $8 \mathrm{~cm}^{3}$. The atomic weight of Ne is 20 , and its total spin is 0 , so it's a boson.
(a) Give the average kinetic energy (in eV) of a Ne atom in this gas at temperature $300^{\circ} \mathrm{K}$.
(b) Estimate the de Broglie wavelength (in A) for a Ne atom in this gas at $300^{\circ} \mathrm{K}$.
(c) Explain why you can use the Maxwell-Boltzmann distribution for this gas at temperature 300 K .
(d) Estimate at what temperature (in ${ }^{\circ} \mathrm{K}$) quantum effects will become sufficiently important that you can no longer use the Maxwell Boltzmann distribution for this gas (assuming the system remains a gas rather than becoming liquid or solid).

Problem 2 (10 pts)
Consider a system of N distinguishable particles that has only two possible energy states. Each particle can be in an energy state of energy $\mathrm{E}_{1}=0$ or in energy states of energy $\mathrm{E}_{2}=\varepsilon=4.4 \mathrm{eV}$. The statistical weight (degeneracy) is $\mathrm{g}_{1}=1$ for the state of energy E_{1} and $\mathrm{g}_{2}=9$ for the states of energy E_{2}. No other states are available for these particles. Use the Boltzmann distribution since the particles are distinguishable.
(a) At what temperature are there on average an equal number of particles with energy E_{1} as there are with energy E_{2} ? Give your answer in ${ }^{\circ} \mathrm{K}$.
(b) What is the average energy per particle at the temperature found in (a)? Give your answer in eV .
(c) What is the average energy per particle as T--> oo? (very high temperature). Give your answer in eV.
(d) For one mol of this system, estimate the heat capacity C_{V} at temperature $300^{\circ} \mathrm{K}$. Your estimated answer should not differ from the exact answer by more than 0.1 R , with R the gas constant $\left(\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}, \mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}\right)$.

Problem 3 (10 pts)
The heat capacity of 1 mol of a diatomic gas has values:
$\mathrm{C}_{\mathrm{v}}=1.5 \mathrm{R}$ at temperature $\mathrm{T}=5 \mathrm{~K}$.
$\mathrm{C}_{\mathrm{V}}=2.4 \mathrm{R}$ at temperature $\mathrm{T}=10 \mathrm{~K}$.
$\mathrm{C}_{\mathrm{V}}=2.8 \mathrm{R}$ at temperature $\mathrm{T}=100 \mathrm{~K}$.
The distance between the two atoms in the molecule is 1.5 A . The two atoms are identical.
(a) Estimate the atomic weight of the atoms in this molecule. Justify your answer.
(b) Estimate the vibration frequency of this molecule, in s^{-1}.
(Use $\hbar=6.58 \times 10^{-16} \mathrm{eVs}$ or $h=4.136 \times 10^{-15} \mathrm{eV} \mathrm{s}$)
(c) Estimate the value of its heat capacity at $\mathrm{T}=2 \mathrm{~K}$, assuming the system remains a gas at $\mathrm{T}=2 \mathrm{~K}$.

Justify all your answers to all problems

